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Abstract. Carbon budgets for the polar oceans require better
constraint on air–sea gas exchange in the sea ice zone (SIZ).
Here, we utilize advances in the theory of turbulence, mixing
and air–sea flux in the ice–ocean boundary layer (IOBL) to
formulate a simple model for gas exchange when the surface
ocean is partially covered by sea ice. The gas transfer veloc-
ity (k) is related to shear-driven and convection-driven turbu-
lence in the aqueous mass boundary layer, and to the mean-
squared wave slope at the air–sea interface. We use the model
to estimatek along the drift track of ice-tethered profilers
(ITPs) in the Arctic. Individual estimates of daily-averaged
k from ITP drifts ranged between 1.1 and 22 m d−1, and the
fraction of open water (f ) ranged from 0 to 0.83. Converted
to area-weighted effective transfer velocities (keff), the mini-
mum value ofkeff was 10−5 m d−1 nearf = 0 with values
exceedingkeff = 5 m d−1 at f = 0.4. The model indicates
that effects from shear and convection in the sea ice zone
contribute an additional 40 % to the magnitude ofkeff, be-
yond what would be predicted from an estimate ofkeff based
solely upon a wind speed parameterization. Although the ul-
timate scaling relationship for gas exchange in the sea ice
zone will require validation in laboratory and field studies,
the basic parameter model described here demonstrates that
it is feasible to formulate estimates ofk based upon proper-
ties of the IOBL using data sources that presently exist.

1 Introduction

The regulation of air–water gas exchange occurs within a
small vertical region of∼ 100 µm at the air–water interface
– a region that is too small for direct measurement of the
properties governing this exchange, namely partial pressure
and diffusive length scale. In addition, the air–water interface
is continually being deformed by waves and surfactants and
consequently the profile of turbulence and gas abundance are
difficult to determine for a given surface condition (Jähne et
al., 1987). This limitation at the critical scale has led to a pro-
liferation of rate approximations based on quantities that can
be more readily measured. Wind speed is the most common
of these quantities, as it is an important mixing mechanism
for many surface water bodies, including the ocean (Liss,
1973; Wanninkhof, 1992; Wanninkhof and McGillis, 1999;
Nightingale et al., 2000; Ho et al., 2006, 2011; Sweeney et
al., 2007; Wanninkhof et al., 2009). However, even for the
blue water ocean, wind speed parameterizations account for
75 % or less of the observed variability in the gas exchange
rate (Frew et al., 2004; Stanley et al., 2006). Wind speed pa-
rameterizations are widely used where wind is the first order
mixing mechanism, and may be adequate under certain open
ocean conditions.

In contrast to the open ocean, there are physical systems
such as wetlands, rivers, estuaries, and the coastal surf zone
where wind speed derived estimates of gas exchange are in-
complete given the other mechanisms that produce aqueous
turbulence. These mechanisms include tides, internal waves
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and boundary mixing. In these systems, it is necessary to rely
on additional or alternative metrics for relating gas exchange
to the underlying forcing conditions (Ho et al., 1997; Zappa
et al., 2003; Frew et al., 2004).

For moderately to sparingly soluble (i.e., most) gases, the
existence of an aqueous viscous sublayer at the air–sea in-
terface is the dominant restriction to transfer across the in-
terface. This bottleneck ranges in length scale from 20 to
200 µm (Jähne and Haubecker, 1998); turbulent eddies im-
pinging on the free surface can reduce or collapse the viscous
sublayer, leading to “bursts” of air–sea gas transfer (Rao et
al., 1971). Consequently, measurement of the TKE budget
close to the air-sea interface provides the best metric for de-
termining the gas exchange rate when multiple drivers are at
work.

We have argued that the sea ice covered polar oceans
are another region where wind speed parameterizations are
not expected to be adequate (Loose et al., 2009; Loose and
Schlosser, 2011), and in this contribution we present an alter-
native parameter model that is based on the mechanisms that
produce turbulence in the ice–ocean boundary layer (IOBL):
(1) shear caused by the velocity differential between drifting
ice and the water column beneath (McPhee and Martinson,
1992), (2) buoyant convection caused by heat loss and phase
changes at the ocean surface (Morison et al., 1992), and
(3) short period waves and wave interactions with ice floes
(Wadhams et al., 1986; Kohout and Meylan, 2008) (Fig. 1).
Our goal is to explore what effect these turbulent production
mechanisms may have on the magnitude ofk by utilizing the
significant advances in theory and observation of turbulence
in the IOBL, developed over the past 30 yr (McPhee, 2008).
This exercise is meant to provide first-order insight into the
processes by which sea ice might simultaneously produce
and modulate gas exchange, and to provide a model template
upon which laboratory and field studies can begin to establish
firm quantitation of these processes.

In Sect. 2 we introduce the basic theory that has been
developed to relate differing turbulence production mecha-
nisms to the rate of air–sea gas exchange. Section 3 briefly
reviews how to estimate turbulence production from shear in
the IOBL as a function of wind speed, ice drift velocity and
sea ice cover. Section 4 contains a similar review for the esti-
mate of turbulence production by convection in the IOBL.
Section 5 provides a rough estimate ofk from capillary-
gravity waves. Section 6 is used to present estimates ofk,
calculated from four ice-tethered profiler (ITP) missions. Fi-
nally we discuss the results from the ITP data and the param-
eter model and how they might relate to future investigations
of k in the sea ice zone (SIZ).
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Fig. 1. A graphic illustration of three mechanisms that can lead to
turbulence production and gas exchange in the ice–ocean boundary
layer.

2 Methods

2.1 A note about upscalingk in the sea ice zone

The sea ice zone exists as a heterogeneous distribution of
ice cover and open water, and this presents a challenge when
trying to appropriately represent a gas transfer rate that takes
this heterogeneity into account. Because sea ice is a porous
medium (Cox and Weeks, 1983), it is possible in principle
to ventilate the surface ocean of gas through the ice matrix
as across the air-sea interface. To reflect this, the air–sea gas
flux can be written as

F = keff1C, (1)

where1C is the molar gas differential across the air–sea in-
terface, andkeff is the “effective” gas transfer velocity,

keff = (1− f )kice+ (f )k, (2)

wheref is the fraction of open water, (1− f ) is the frac-
tion of sea ice cover,kice represents the bulk diffusive gas
flux through the sea iceD/zice, andk is the open water gas
transfer velocity – what we are most accustomed to work-
ing with. This representation ofkeff is consistent with the
asymptotic homogenization of diffusive transport through a
medium with rapidly varying permeability, such as the ice
covered upper ocean (Dykaar and Kitandis, 1992; Jähne and
Haubecker, 1998; Golden et al., 2006).

In practice, the rate of gas diffusion through cold columnar
sea ice is within a factor of 10 of molecular diffusion in water
(e.g.,∼ 10−4 cm2 s−1). Thuskice is very small compared to
k – at least for cold, consolidated columnar sea ice (Gosink
et al., 1976; Loose et al., 2010). In the presence of thin ice,
such as grease ice, nilas or frazil ice, gas exchange may not
be so slow, but solute rejection from the ice (Killawee et al.,
1998; Loose et al., 2009) makes this circumstance hard to in-
terpret. However, the distinction, betweenk andkeff is worth
clarifying for another reason. There are a variety of meth-
ods for estimating the air–sea gas transfer velocity. Based on
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the scale over which these methods integrate, some yieldkeff
and others yieldk or kice, and it is important to be able to
put the results from these methods on a common scale. For
example, tracer-based estimates of gas transfer velocity such
as the radon deficit method (Smethie et al., 1985; Bender et
al., 2011), and the dual-tracer method (Wanninkhof et al.,
1993; Nightingale et al., 2000) will yield estimates ofkeff,
whereas covariance flux (McGillis et al., 2001), and gradient
flux (Orton et al., 2010) methods represent a much smaller
spatial footprint and will yield a gas transfer velocity that
will representkice or k, but notkeff. Examples of past stud-
ies that estimatekeff are Fanning and Torres (1991), Loose
et al. (2009), and Loose and Schlosser (2011). The study
by Miller et al. (2011) would yield estimates ofkice and the
study by Else et al. (2011) would yield estimates ofk for a
polynya-type water surface.

In this study, the parameter model estimates of gas transfer
are based on predictions of the aqueous turbulence and rep-
resent values ofk. We will present the results ask andkeff,
using Eq. (2) and by assuming thatkice is negligible.

2.2 TKE dissipation model

We require an estimate ofk that accounts for turbulence pro-
duction mechanisms that are unique to the SIZ. This can be
accomplished using the relationship between TKE dissipa-
tion (ε) and gas exchange (Lamont and Scott, 1970),

k ∝ (νε)0.25Sc−0.5 , (3)

whereν is the kinematic viscosity, andSc is the Schmidt
number. For the purposes of this paper, we will assume
the constant of proportionality determined by Zappa et
al. (2007); 0.419. It should be noted thatε varies vertically
in the water column and is likely to assume distinct values at
the ice–water and air–water interfaces, therefore unique pro-
portionality constants may exist for the SIZ. Next we assume
that over the mixing timescale of the surface ocean TKE pro-
duction should balance dissipation, leading to a stationary
form for the kinetic energy equation (Gaspar et al., 1990),

u2
∗∂u/∂z + b′w′ − ε = 0. (4)

The first term represents TKE production by shear and
the second represents TKE production by buoyancy flux.
Monin–Obukhov similarity theory (MOST) demonstrates
how to relate turbulence produced by convection and turbu-
lence produced by shear (Lombardo and Gregg, 1989). When
convection ceases and stratification sets in, MOST also pro-
vides a means for estimating the dampening effect on shear
driven turbulence based on the Obukhov length scale,

L0 =
−u3

∗0

κ〈w′b′〉0
, (5)

whereu∗0 is the aqueous friction velocity at the ice–water or
air–water interface,〈w′b′

〉0 is the buoyancy flux at the ocean
surface, andκ is the Von Karmann constant.

Finally, ε from Eq. (4) can be related to the turbulent fric-
tion velocity in the water (u∗0) by

ε = u∗0/κz , (6)

wherez the depth scale, assumingz lies within the boundary
layer. By definition,u∗0 is a representation of the shear stress
(τ) that acts on the boundary layer,

u∗0 =
√

τ/ρ, (7)

and it is the shear stress balance that is altered by the presence
of ice floes, individually and as part of the ice pack. In the
next section we will review and describe the stress balance in
partially ice-covered seas and then use the above equations
to make estimates ofk.

3 Shear in the IOBL

Sea ice floes present additional surfaces against which nor-
mal and tangential forces can operate. An individual ice floe
is subject to surface drag from wind over the ice, which is
transmitted to the IOBL via bottom drag, when the ice and
the water beneath move relative to each other (Shirasawa and
Ingram, 1991). In addition to surface stresses, an ice floe ex-
periences form drag as it displaces water by its lateral motion
(Perrie and Hu, 1997), and by wave radiation stress as grav-
ity waves propagate from open ocean into the pack (Perrie
and Hu, 1996, 1997). Steele et al. (1989) observed that as sea
ice concentration decreases, the ice pack behaves more like
a “flotilla of barges” where individual floes may experience
form drag that exceeds surface drag, when the diameter of
the floe is less than 300 times the ice draft, based on the ratio
of surface and form drag coefficients.

The total shear stress exerted on the aqueous boundary
layer can be estimated as a function of sea ice cover (1−f ),
wind speed (U ) and ice drift velocity (V0). By these mecha-
nisms the total drag on the water surface boundary layer is as
follows (Steele et al., 1989):

τ = (1− f )(τskin-iw + τform) + (f )(τskin-aw)(1− W), (8)

whereτskin-iw is the ice–water skin drag,τform is the form
drag around ice floes,τskin-aw is the air–water skin fric-
tion andW is the fraction of air–water stress that is used
to produce surface gravity waves (Steele et al., 1989).W =

1.6× 10−4ρw/ρa is based on the Charnock (1981) relation-
ship.

(τform) is dependent on the profile the ice presents to the
flow as it forces its way through the water. This effect was
represented by Steele et al. (1989) by incorporating the free-
board (D) and length (L) of the ice floe such that form drag
decreases as the characteristic dimension of the flow size in-
creases. This behavior is meant to simulate the “wake effect”
where the overall pressure gradient from the front to the back
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of the floe is decreased asL increases.

τform =
1

2
ρw

D

L
|V0|V0, (9)

whereV0 is the relative velocity between the water in the
mixed layer and the ice floating on it (Lu et al., 2011), and
ρw is the water density. Tennekes and Lumley (1972) showed
that the form drag decreases approximately proportional to
L−0.5. In general, when sea ice concentration is close to
0 %, the characteristic dimension ofL is small, e.g., 10 m.
As ice cover increases, so doesL (Toyota et al., 2006), and
the relationship follows a power-law dependence of the form
N(L) ∝ L−α, whereN is the number density of ice floes per
km2 (Rothrock and Thorndike, 1985). Toyota et al. (2006)
observed that this relationship cannot be fit with a single
value forα; whenL is less than 40 m, the value ofα is 1.15
and whenL is greater than 40 m,α = 1.87 provides the best
fit. N(L) can be related to the fraction of sea ice cover if
we assume a characteristic shape for ice floes. The SIC was
computed as the average of two “ideal” floes, one square-
shaped and one circular, with sides and diameters of length
L, multiplied byN(L) (Fig. 2).

(τskin-iw), the next term in the boundary layer stress bal-
ance (Eq. 8), represents the skin friction at the ice–water
interface. The ice–ocean boundary layer is often compared
with the atmospheric boundary layer as both are affected by
planetary rotation, both experience relatively constant stress-
driven turbulence (Blackadar and Tennekes, 1968) and both
tend to follow the law of the wall, which permits a complete
determination of the velocity profile and turbulence closure
in terms of two variables:u∗0 and the roughness length scale
zo (McPhee, 2008),

u∗0 =
U(z)

κ

(
ln

z

z0

)
, (10)

whereU(z) is the Euclidean norm velocity at depthz in the
surface boundary layer. Referring to Eq. (7), the skin friction
can alternately be expressed as a velocity or a stress with no
loss of generality. Observations in the IOBL show that the
surface boundary layer, where velocity varies linearly with
the log of depth (∼ 2 m) behaves differently from the outer
layer (∼ 70 m) (Shaw et al., 2008). Outside of the surface
layer, it is necessary to account for Ekman turning on the
shear stress, and this can be accomplished using the Rossby
similarity theory (Blackadar and Tennekes, 1968; McPhee,
2008). To determine the surface shear stress in terms of the
ice velocity it is necessary to account for the geostrophic drift
at the base of IOBL because the magnitude of shear and the
magnitude of rotation are interdependent (McPhee, 2008).
This can be accomplished using the Rossby similarity the-
ory (Blackadar and Tennekes, 1968; McPhee, 2008), which
relatesV0 with u∗0, the interface friction velocity overlying
a neutral geostrophic current (McPhee, 2008; Shaw et al.,
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Fig. 2. The relationship between the floe number distribution (N )
per km2 (left axis) and the individual floe dimension,L (right axis),
vs. the fraction (f ) of open water area (or converse of the SIC) from
Toyota et al. (2006).N follows a distinct power law distribution
when floe size decreases below a threshold (Toyota et al., 2006).

2008),

V0

u∗0
=

1

κ

(
log

u∗

f z0
− A ± iB

)
, (11)

whereV0 andu∗0 are the two-dimensional ice-drift and fric-
tion velocities, expressed as imaginary numbers,f is the
Coriolis parameter, andA andB are matching coefficients.
The term logu∗

f z0
is sometimes referred to as the friction

Rossby number,Ro. It can be estimated with values from
Eq. (10) for the nonrotating law of the wall as an initial guess
of the roughness, withz approximated as the sea ice thick-
ness.

When stratification stabilizes the surface layer, shear tur-
bulence is damped and surface turbulence is confined to
a shallower region of the IOBL. Under these conditions,
the similarity terms become dependent on a stability term
(µ∗ = u∗0κ/L0); Ro (µ∗), A(µ∗), andB(µ∗), the solution
to which is described in Sect. 4.2.3 of McPhee (2008).

The surface roughnessz0 is among the most variable and
patchy IOBL parameters, and this variability is caused by the
large range in ice thickness that can occur from thin ice in a
lead (e.g.,∼ cm) to deep keels underneath sea ice pressure
ridges (e.g.,∼ 10 m) (Shaw et al., 2008). Estimates ofz0 span
two orders of magnitude from 1 mm to 9 cm, depending on
ice type (McPhee, 2008). McPhee (1992) found roughness
lengths varying from 2 to 9 cm during three Arctic drift ex-
periments, and (Shaw et al., 2008) foundzo roughness values
near 10 cm using data from autonomous ocean flux buoys.
Younger ice is smoother withz0 close to 1 mm and in multi-
year pack icez0 is about 5 cm (McPhee, 2008).

(τskin-aw), the final stress term in Eq. (8), refers to the shear
stress exerted by the wind on the upper ocean. In the SIZ
this stress occurs in the regions where water is exposed by
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divergent sea ice motions (i.e., leads and polynyas), or be-
tween floes in the marginal ice zone. The air–water shear
stress that is transmitted into the ocean surface boundary
layer can be expressed as

τskin-aw = ρaCdU |U | , (12)

whereρa is the air density,Cd is the air–water drag coeffi-
cient (1.5× 10−3, Andreas and Murphy, 1986) andU is the
10 m wind speed.

It is instructive to visualize how the individual terms of
the total stress exerted on the IOBL vary with the sea ice
cover, or conversely with the fraction of open water (f ).
For this visualization, we use a constantU = 10 m s−1 and
a constantV0 = 0.12 m s−1, based on the average drift ve-
locity of the autonomous ocean flux buoy #3 (http://www.
oc.nps.edu/~stanton/fluxbuoy/index.html). Using these val-
ues, we have computed the individual terms in Eq. (8),
(1−f )τform, (1−f )τskin-iw , and(f )τskin-aw, for a variable ice
cover ranging fromf = 0 (100 % ice cover) tof = 1 (0 %
ice cover), (Fig. 3). ForU = 10 m s−1, the air–water stress
leads to aτskin-aw = 0.17 N m−2 andV0 = 0.12 m s−1 results
in τskin-iw = 0.05 N m−2. Individually, these terms are pro-
portionately modulated by the fraction of ice cover and open
water, respectively, and thereforeτskin-aw increases linearly
asf increases andτskin-iw follows the opposite trend, achiev-
ing its maximum value whenf = 0. In comparison, the re-
lationship betweenf andτform is more complicated. We ob-
serve two tendencies, the first asτform increases quadratically
from f = 0 to f = 0.8, and then decreases again fromf =

0.8 tof = 1. The physical explanation for the two modes re-
sults from the competing influences of ice cover and floe di-
mension on the form drag. Atf = 0, the influence of the floe
dimension (1/L ∼ 10−4 m−1) strongly diminishesτform. As
the ice cover decreases so doesL and we observe a rapid in-
crease inτform, as the “wake effect” of surrounding floes be-
comes less and each individual floe is subject to greater form
drag. If we compute the gas transfer velocity fromτ using
Eqs. (8), (6) and then (3), we observe that shear-driven tur-
bulence in the IOBL contributes between 1.6 and 2.0 m d−1

to the overall gas transfer velocity in the sea ice zone, for
a wind speed of 10 m s−1 and an ice velocity of 0.12 m s−1

(Fig. 3).

4 Buoyant convection/stratification

As with the shear-driven turbulence, the goal is to make a
determination ofε, which can then be used to estimatek.
The first step is to calculate the Obukhov length scale, to de-
termine whether convection (L0 < 0) or stratification (L0 > 0)
characterizes the surface layer of the ocean (McPhee, 2008).
In the SIZ, as contrasted with the lower latitudes,L0 can be
affected by freezing and melting of ice as well as latent and
sensible and shortwave heat transfer. Here, its worth pointing
out that sea ice freezing (melting) can concentrate (dilute)
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Fig. 3. A hypothetical example of the terms in the stress balance
and gas transfer velocity (k) resulting from a constant RMS wind
speed of 10 m s−1 and an ice drift velocity of 0.12 m s−1 at 75◦ N,
25◦ W. To parameterize the floe size, we used the scaling relation-
ship of Toyota et al. (2006) to convert sea ice concentration (SIC)
to a characteristic floe dimension (L).

the gas content of the upper ocean through solute rejection
(dissolution) (Killawee et al., 1998; Loose et al., 2009), and
change the upper ocean air–sea gas partial pressure differen-
tial. For the purposes of this parameter model we will not
consider the effect of solute rejection and dissolution.

L0 from Eq. (5) can be rewritten as (Lombardo and Gregg,
1989)

L0 =
−u3

∗0

κJb0
, (13)

whereJb0 is the surface buoyancy flux in W kg−1 or m2 s−3

equivalently. For the IOBL, the major contributions to the
buoyancy flux are sensible heat transfer, sea ice freeze–melt,
and the salt balance from evaporation−precipitation,

Jb0 = −
gα

ρcp

(J SH
q + J LH

q )(f ) + J ice
b (1− f )

+ gβ (E − P)S0(f ), (14)

whereα is the coefficient of thermal expansion,β is the co-
efficient of haline contraction,ρ is the density of seawater,
E − P is the rate of evaporation less precipitation,S0 is the
surface seawater salinity in kg kg−1, cp is the specific heat
capacity, andg is the gravitational constant. Again, the terms
f and(1−f ) refer to the fraction of open water or ice cover,
respectively. The buoyancy flux from sea ice is solved us-
ing the “three equation control interface solution” wherein
the heat and salt balance are regulated by turbulent exchange
across the ice–water interface and by the velocity of that in-
terface, indicating growth or melt of sea ice (Eqs. 6.8, 6.9;
McPhee, 2008), which usesTw, T , and the ice–water fric-
tion velocity

(
u∗0 =

√
τskin-iw/ρ

)
to solve forJ ice

b . Finally,
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J SH
q and J LH

q are the surface sensible and latent heat flux

in W m−2. The last term in Eq. (14) represents the surface
freshening or salinification and we estimate it from the net
latent heat flux, which is an NCEP Reanalysis product.J SH

q

andJ LH
q over open water can be estimated using the bulk ap-

proximation for scalar flux in the atmospheric boundary layer
flux (Andreas and Murphy, 1986),

J SH
q = ρcpCH (Tw − T ) |U |

J LH
q = ρLvCH (QS − Qz) |U | , (15)

whereTw is the water surface temperature,CH – the surface
drag coefficient – is approximated as 1.26× 10−3, andQs is
the specific humidity at the dew point, defined byTw. Qz is
the specific humidity at the reference height,z, which should
be the same as the height of the wind speed measurement
(Andreas et al., 2010).

In the absence of boundary layer flow, the TKE dissipa-
tion is directly equivalent to the heat flux:ε = J 0

b . In a mixed
condition of convection+ shear, a similarity scaling forε is
chosen usingL0 to characterize the relative balance between
convection and shear (Lombardo and Gregg, 1989):L0 � z,
the boundary layer thickness, indicates free convection and
L0 � z indicates a shear-dominated regime.

5 Surface waves and interactions with sea ice

In addition to shear and convection, surface waves and their
interaction with ice floes will also produce turbulence and
gas exchange in the SIZ. As discussed in Sect. 2, the actions
of wind-driven surface waves are the dominant mechanism
by which aqueous turbulence leads to gas exchange (Jähne et
al., 1987; Wanninkhof, 1992), and among these, the highest
frequency gravity waves appear most effective at disturbing
the viscous mass boundary layer and enhancingk (Bock et
al., 1999; Frew et al., 2004, 2007). The mean squared wave
slope〈s2

〉 of these short period gravity waves correlates well
with k (Bock et al., 1999; Frew et al., 2004, 2007), however
the gravity wave frequency distribution is variable and in-
teracts strongly with sea ice (Wadhams et al., 1986; Hayes
and Jenkins, 2007). To date, most studies of wave interac-
tions with sea ice focus on much longer period waves, be-
cause they can be responsible for the breakup and melt of ice
floes (Squire et al., 1995; Meylan et al., 1997; Kohout and
Meylan, 2008), and relatively less attention has been paid to
waves in the capillary-gravity range (40–800 rad m−1). En-
ergy attenuation by wave interaction with sea ice is strongest
for waves with a wave number of 1 rad m−1 or less (Polnikov
and Lavrenov, 2007). Therefore, it might be expected that
short period capillary-gravity waves are reflected with near
100 % efficiency, based on wave reflection studies (Squire
and Williams, 2008).

Direct measurements of the capillary-gravity wave spec-
trum in the presence of sea ice are necessary to constrain the

contribution of surface wave forcing of gas exchange, and we
are not aware of any study that has explicitly examined the
wave field in this range. In the mean time, we can apply the
relationship between〈s2

〉 and 10 m wind speed from Frew et
al. (2007) (their Fig. 1) to give an idea of how surface forc-
ing contributes to the overall gas exchange. The choice of a
parameterization based on〈s2

〉 instead of a relationship be-
tween wind speed and gas exchange can be justified by rec-
ognizing that Jähne et al. (1987) have shown that waves in the
capillary-gravity range arise and decay within seconds, upon
excitation by wind, indicating minimal fetch dependence. In
contrast, it is not well known how the wind speed–gas ex-
change relationship varies with fetch.

In lieu of direct measurements of〈s2
〉 in the SIZ, we have

used data from Frew et al. (2007) that relates the 10 m wind
speed to〈s2

〉
100
40 , the mean squared wave slope from 40 to

100 rad m−1. To capture the tendency between data〈s2
〉
100
40

andU10 we fit the Frew et al. (2007) data with a third order
polynomial with fit coefficients [7.7814×10−6, −0.0001624,
0.0015064,−0.0012018] and anR2 value of 0.91 (Fig. 4).
As above,U10 from NCEP data was interpolated onto the
ITP drift track. Finally, the values of〈s2

〉
100
40 were used to

estimatek using

kmss= 0.336+ 1.82× 105
〈s2

〉
100
40 (16)

(Frew et al., 2004). The relationship between〈s2
〉
100
40 and gas

exchange appears most robust under short fetch conditions
and where bubbles are not a major contributor to the ex-
change rate (Frew et al., 2004, 2007). Although we do not
have measurements to support this, anecdotal observations
indicate that breaking waves and bubble penetration are min-
imal in the sea ice zone.

6 Computation of k from ITP data

We have calculated the gas transfer velocity using the param-
eter model for shear and convective turbulence in the IOBL,
using data from ITPs together with satellite data products
for the Arctic Ocean. The inputs to this parameter model
(f , U , V0, Q) and profiles ofT and S, were taken from
post-processed ITP missions 3, 6, 7 and 8, (http://www.whoi.
edu/itp). Daily estimates of sea ice cover were derived from
the Bootstrap algorithm for NIMBUS-7 and SSM/I satel-
lite radiometers (Comiso, 2007). Daily estimates of wind
speed and surface air temperature were taken from NCEP Re-
analysis data provided by NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, (http://www.esrl.noaa.gov/psd/). The inputs
from gridded remotely sensed data were extracted by inter-
polating onto the recorded daily positions of the ITPs.

The calculation fork proceeded as follows.

1. To start, the equation for buoyancy flux (Eq. 14) is
evaluated to determine whether convection or strat-
ification is affecting water column turbulence. The
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 1 
Figure 4.  Modified from Frew et al., (2007), the relationship between the 10-m wind speed and 2 

the mean-squared wave slope has been represented in this study by a cubic (solid black line). 3 

 4 

 5 

 6 

Fig. 4. Modified from Frew et al. (2007), the relationship between
the 10 m wind speed and the mean-squared wave slope has been
represented in this study as cubic (solid black line).

threshold for buoyant convection is determined us-
ing the Obukhov length (L0) criteria:H/L0 > 1 (Lom-
bardo and Gregg, 1989).H is half the mixed-layer
depth, and the mixed-layer depth was found by locat-
ing the maximum value ofN2 in the top 50 m of the
water column – typicallyH was 10–15 m.

2. Shear-driven turbulence in the IOBL is determined by
summing the individual terms in the stress balance
(Eq. 8). To solve Eq. (9) forτform, the floe dimen-
sion, L, is estimated from the empirical relationship
in Fig. 1, as follows. The floe number density,N , is
first computed for the range ofL from 10 to 104 m,
using the parameterizations presented by Toyota et
al. (2006). Next, the discrete values ofN andL are
used to compute the sea ice cover, (1− f ), by taking
the average of square (L × L) and circular

(
π
4 L2

)
floe

geometry. For a discrete value of sea ice cover from
the ITP drift, a value forL is computed as a table
lookup.τskin-iw is computed using Eqs. (11) and (7) as
described in Sect. 3: here, the similarity terms,Ro, A

andB, in Eq. (11) are evaluated in terms of the buoy-
ancy flux (J 0

b , Eq. 14). Finally,τskin-aw is computed
using the Reanalysis wind speed in Eq. (12). The total
shear-stressτ from Eq. (8), and resulting friction ve-
locity (u∗0) is then used to compute the shear-driven
TKE dissipation (εs, Eq. 6).

3. Finally, the aggregate total dissipation (ε) was com-
puted asε = 0.84

(
0.58J 0

b + 1.76εs
)
, and k is com-

puted fromε or εs using Eq. (3). In Figs. 5 and 6,k (la-
beledkshear) was computed fromεs, and in Figs. 7 and
8, k (labeledkconv) was computed assumingε = J 0

b .
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 2 

Figure 5.  Top panel: Wind speed (U), ice velocity (V0), and the fraction of open water (f), 3 

calculated along the drift path of Ice-tethered Profiler #3 (ITP 3, http://www.whoi.edu/itp).  4 

Bottom panel: The gas transfer velocity (kshear) that would result from shear-driven turbulence.  5 

Red “+” symbols indicate estimates of kshear that have been affected by stratification.  The 6 

speckled color indicates the vertical distribution of N2> 10-4 s-2, giving a rough approximation of 7 

the mixed-layer depth.  Some data gaps exist in the ITP profiles.   8 

 9 

Fig. 5. (top) Wind speed (U ), ice velocity (V0), and the fraction of
open water (f ), calculated along the drift path of ice-tethered pro-
filer #3 (ITP 3,http://www.whoi.edu/itp). (bottom) The gas trans-
fer velocity (kshear) that would result from shear-driven turbulence.
Red “+” symbols indicate estimates ofkshear that have been af-
fected by stratification. The speckled color indicates the vertical
distribution ofN2 > 10−4 s−2, giving a rough approximation of the
mixed-layer depth. Some data gaps exist in the ITP profiles.

We present estimates ofk from shear-driven turbulence
separately from convection-driven turbulence to compare
their relative contributions to the overall gas transfer veloc-
ity. These separate terms are presented for two of the four
ITP missions (ITP 3 and 8). The duration of ITP 3 was 786
days, beginning 24 August 2005 withf , the open water frac-
tion, less than 0.1 until the last 100 days, when ITP 3 drifted
into waters withf of nearly 0.3, near the center of the Beau-
fort Gyre. The maximum daily NCEP wind speed,U , was
17.2 m s−1 and the meanU was 5.8 m s−1, whereas the max-
imum ice velocity,V0 was 0.24 m s−1 and the averageV0 was
0.05 m s−1 (Fig. 5). Throughout the drift, the ice–water skin
friction dominated the stress balance, because of the large
fraction of ice cover. On average, the ice–water skin friction
was 10 times greater than the form drag and more than 100
times greater than the air–water skin friction.

It is worth noting that between days 900 and 1000, de-
creased ice cover (increasedf ) corresponded to an increase
in τform as dictated by Eq. (9). However, this effect was small
compared to the coincident increase inτskin-iw that resulted
from an increase in stratification. McPhee (2008) describes
this effect in Sect. 4.2.3 – assuming the same boundary forc-
ing conditions, the total shear stress in the stratified water
column is the same as the neutral water column. However,
stratification confines the profile of shear stress to a shal-
lower surface layer. This effectively “concentrates” the shear
stress in the surface layer, leading to an enhancement in the
apparent TKE dissipation and thus gas exchange. The max-
imum observed values during ITP 3 all occurred during the
ice retreat period and can be associated with the coincident
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 1 
Figure 6. Top panel: Wind speed (U), ice velocity (V0), and the fraction of open water (f), 2 

calculated along the drift path of ITP 8  (http://www.whoi.edu/itp).  Bottom panel: The gas 3 

transfer velocity (kshear) that would result from shear-driven turbulence. Red “+” symbols indicate 4 

estimates of kshear that have been altered by stratification through the stability function (equation 5 

11).  The speckled color indicates the vertical distribution of N2> 10-4 s-2, giving a rough 6 

approximation of the mixed-layer depth.  Some data gaps exist in the ITP profiles.   7 

Fig. 6. (top) U , V0, andf , calculated along the drift path of ITP
8 (http://www.whoi.edu/itp). (bottom) Thekshearthat would result
from shear-driven turbulence. Red “+” symbols indicate estimates
of kshear that have been altered by stratification through the sta-
bility function (Eq. 11). The speckled color indicates the vertical
distribution ofN2 > 10−4 s−2, giving a rough approximation of the
mixed-layer depth. Some data gaps exist in the ITP profiles.

increase in bothτform andτskin-iw (Fig. 5). The mean value
daily kshearfor ITP 3 was 1.3 m d−1 and the maximum was
7.8 m d−1.

A somewhat similar picture emerges for ITP 8; the ITP
8 data extended over 784 days, beginning 12 August 2007.
The mean of the daily NCEP wind speed during the ITP 8
drift was also 5.7 m s−1, with a maximum daily average wind
speed of 14.5 m s−1. However, the average ice velocity was
0.075 m s−1, 25 % larger than the average drift velocity of
ITP 3, and the maximum was 0.35 m s−1. Overall, the vari-
ance in the drift velocity was greater for ITP 8, as compared
to ITP 3. Near day 1600 (ca. 275 days after starting its drift),
ITP 8 drifted into progressively opening sea ice cover, until
f increased to a maximum of 0.83, around day 1700 (Fig. 6).
Similar to what was observed in ITP 3, the decrease in sea ice
cover produced a decrease inL, based on the parameteriza-
tion in Fig. 2, resulting in an increase inτform. Likewise, strat-
ification in the ITP profiles (apparently from ice melt) caused
τskin-iw to increase coincident with the increase inf . During
the increase in open water,kshearachieved a local maximum
of 8.0 m d−1, (Fig. 6, bottom panel) on day 1705, very near
the peak open water whenf was 0.73 – nearly 75 % open
water. The average inkshearwas 1.4 m d−1 for ITP 8.

The parameter model estimates ofkconv are on average 3
times smaller as compared to the estimates ofkshear. These
estimates depict a seasonal cycle that predictably mirrors the
air–water temperature differential. This is the case for both
ITP 3 and 8 (Figs. 7, 8). During the period of peak heat
flux, kconv reached its peak above 1.2 m d−1 for ITP 3 and
1.5 m d−1 for ITP 8. These peaks inkconv tended to occur
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 1 
Figure 7. Top panel: Surface air and water temperature and fraction of open water along the ITP 2 

3 drift track.  Bottom panel: Gas transfer velocity (kconv.) resulting from heat flux-driven 3 

convection in the IOBL. 4 
 5 
 6 

Fig. 7. (top) Surface air and water temperature and fraction of open
water along the ITP 3 drift track. (bottom) Gas transfer velocity
(kconv) resulting from heat flux-driven convection in the IOBL.

whenf > 0 and when the air–water temperature differential
strongly favored heat loss to the atmosphere, i.e., when fall
cooling was leading to sea ice formation, but open water area
yet remained (e.g., days 1700–1800, Fig. 8). Conversely, the
periods of apparent decrease in sea ice cover and increase in
air temperature during spring (e.g., days 1600–1700, Fig. 8),
causedL0 to increase and the convection threshold to exceed
the Obukhov length criteriaH/L0 > 1. This causeskconv to
be “turned off” in the parameter model.

Having combined the TKE production from both shear and
convection and using those values ofε to estimatek from
ε = 0.84

(
0.58J 0

b + 1.76εs
)
, we find that the mean value of

k from shear+ convection was 1.63 m d−1 and the maxi-
mum was 10.6 m d−1. In general,k is a scale independent or
intensive property so we would expect no strong trend be-
tweenk andf . This lack of tendency is borne out in Fig. 9
(top panel), despite the areal dependence that has been in-
troduced through Eqs. (8) and (14) for the shear and buoy-
ancy budgets. However, there is one interesting feature be-
tweenf = 0.15 andf = 0.30, with a discernable peak ink,
which exceeds 4 m d−1 (Fig. 9, top panel). This increase in
k is the result of shear and convection enhancements during
the seasonal transition periods when sea ice is in advance or
retreat. As reported above, stratification during ice melt en-
hancesk from shear by “concentrating” the net stress closer
to the air–sea interface. During periods of decreasingf (e.g.,
fall), the effect of convection in water that is still open also
leads to an enhancement ink. If k from shear and convection
is converted tokeff using Eq. (2), we find that the effective
gas exchange across the heterogeneous ocean surface is less
than 1 m d−1 from f = 0 to f = 0.4, and increases almost
linearly across the range fromf = 0 tof = 0.8, with a value
of ∼ 2 m d−1 atf = 0.8 (Fig. 9, lower panel).
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 1 
Figure 8.  Top panel: Surface air and water temperature and fraction of open water along the ITP 2 

8 drift track.  Bottom panel: Gas transfer velocity (kconv.) resulting from heat flux-driven 3 

convection in the IOBL. 4 
 5 

Fig. 8. (top) Surface air and water temperature and fraction of open
water along the ITP 8 drift track. (bottom) Gas transfer velocity
(kconv) resulting from heat flux-driven convection in the IOBL.

To estimate the total magnitude of gas transfer in the sea
ice zone, we have stackedk from the mean-squared slope
relationship in Eq. (9) with the estimates ofk from shear
and convection (described in steps 1–6 above), displayed in
Fig. 10. Thek ∝ f line determined by the mean NCEP wind
speed for the Arctic, and prior values ofkeff from Fanning
and Torres (1991), and Loose and Schlosser (2011) have
been overlaid to compare how this parameter model com-
pares with those values. The parameter model exceeds the
linear proportionality, but no values meet or exceed the me-
dian estimates of Fanning and Torres (1991). On average, the
magnitude ofkeff from ice processes is approximately 42 %
of the total magnitude ofkeff as can be observed in Fig. 10.

7 Discussion and conclusions

The objective of this study was to utilize the existing phys-
ical understanding of turbulence in the ice–ocean bound-
ary layer (IOBL) to formulate a plausible parameter model
for air–sea gas transfer in the seasonal sea ice zone. The
model requires only six input parameters: sea ice concen-
tration, wind speed, sea ice-drift velocity, air temperature
and profiles of water temperature and salinity. These inputs
are available from model output (Proshutinsky et al., 2011;
Timmermans et al., 2011), from satellite data products for
the polar oceans, and from Arctic Observing Network nodes,
such as ITPs and autonomous ocean flux buoys. Here, we es-
timated the magnitude ofk that results from shear and buoy-
ancy production processes that are unique to the sea ice cov-
ered ocean. We used input data from four ITP buoy missions:
ITP 3, 6, 7, and 8. The parameter model calculation is not in-
tended to provide a definitive map ofk for the SIZ as we still
lack sufficient constraint to definitively produce this map. In-
stead it is intended to emphasize the unique mechanisms that
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 1 
Figure 9.   Top panel: The gas transfer velocity, k, from shear and convection in the sea ice zone, 2 

graphed as a continuum with open water area, f. Bottom panel: The effective gas transfer 3 

velocity, keff, (equation 2) from shear and convection along the drift tracks of ITP 3, 6, 7, and 8. 4 

 5 

Fig. 9. (top) The gas transfer velocity,k, from shear and convection
in the sea ice zone, graphed as a continuum with open water area,
f . (bottom) The effective gas transfer velocity,keff, (Eq. 2) from
shear and convection along the drift tracks of ITP 3, 6, 7, and 8.

produce ocean surface turbulence, and thus gas exchange, in
the IOBL.

Several interesting observations have emerged from this
simple analysis, which are worth keeping in mind as we
move toward developing an accepted method to calculatek in
the polar oceans. The estimates ofk from ITP data predomi-
nantly occurred at low values off ; 71 % of the estimates ofk
were made forf < 0.1. This bias exists because the ITP’s are
purposefully situated in consolidated sea ice to ensure a long
duration of the ITP mission. As ice cover becomes exces-
sively low, the likelihood that the ITP will become dislodged
and inoperable increases. This implies that marginal ice zone
conditions (withf > 0.5) are under-represented in the data
and calculations presented here, both in their likelihood of
occurrence and in the gas exchange conditions that exist.

The model indicates thatk becomes enhanced during the
transition periods of spring and fall. In fall, convection coin-
cides with a nonnegligible fraction of open water area result-
ing in enhanced gas exchange. In spring, ice melt leads to the
formation a shallower mixed layer, which confines the sur-
face stress closer to the air–sea interface, enhancingk. How-
ever, a shallower mixed layer is a smaller reservoir for gas
storage; while gas transfer may be enhanced in spring, this
effect on the net flux of a gas is likely more than offset by
equilibration with a much smaller portion of the water col-
umn.

The characteristics of sea ice: underside roughness (zo),
floe dimension (L) and fractional ice cover (1− f ) all play
a direct role modulated the magnitude ofk. Indeed, (1− f )
modulates both the stress balance as well as thekeff; con-
sequently high resolution, high accuracy estimates of these
characteristics are valuable to the parameterization of gas
transfer.

www.ocean-sci.net/10/17/2014/ Ocean Sci., 10, 17–28, 2014
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 2 
Figure 10.  The effective gas-transfer velocity (keff) plotted versus the open water fraction; 3 

adapted from Loose and Schlosser (2011), including estimates of the gas transfer velocity from 4 

the radon deficit method from Fanning and Torres (1991). The stacked bars indicate estimates of 5 

keff from sea ice zone effects (sea ice) and from surface wind waves (MSS), during the drift 6 

tracks of ITP 3, 6, 7, and 8 computed using equation (2) of this study. 7 
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Fig. 10.The effective gas-transfer velocity (keff) plotted versus the
open water fraction; adapted from Loose and Schlosser (2011), in-
cluding estimates of the gas transfer velocity from the radon deficit
method from Fanning and Torres (1991). The stacked bars indicate
estimates ofkeff from sea ice zone effects (sea ice) and from sur-
face wind waves (MSS), during the drift tracks of ITP 3, 6, 7, and 8
computed using Eq. (2) of this study.

It is known from sea ice kinematics that divergent mo-
tions cause an ephemeral fraction of the ocean surface to re-
main exposed, even when satellite sea ice cover is labeled as
100 % (Geiger and Drinkwater, 2005), and some estimates
put this ephemeral fraction at nearly 0.1 or 10 % open wa-
ter (Takahashi et al., 2009). When the fraction of ice cover
exceeds 90 %, (f < 0.1), the fraction of open water that we
need to resolve is of the same magnitude as the error in satel-
lite ice cover estimates (Knuth and Ackley, 2006), resulting
in large uncertainties in the estimate off . In the absence of
a more precise downscaled constraint onf , it would be use-
ful to have some constraint on what the real lower limit is on
open water area, if indeed it is not 0 %. The constraints on
k andf in the winter whenf < 0.1 may be particularly im-
portant as they relate to polynyas where much of the ocean’s
deep water is formed and properties are set.

Finally, the parameter model indicates the effect of shear
and convection processes, some of which are unique to the
sea ice zone, appear to contribute an additional ca. 40 % to
the magnitude of air–sea gas transfer, beyond what would be
predicted if a wind speed or mean-square slope parameteri-
zation is simply scaled by the fraction of open water, which
has been a practice of early attempts to estimate net flux in
the sea ice zone (e.g., Stephens and Keeling, 2000; Takahashi
et al., 2009).

The parameter model that has been presented here can
serve as a means for comparison with laboratory and field-
scale investigations into the connection between ice cover,
aqueous turbulence and gas exchange. At a minimum it will
be necessary to investigate the effects of shear, convection,

stratification and short period wind waves as individual
drivers of the effective gas transfer velocity. It is unclear how
turbulence and gas exchange in the SIZ transitions to turbu-
lence and gas exchange in the open ocean. However, it is
likely that a threshold exists between an upper ocean that is
significantly affected by the presence of sea ice, and an ocean
that is dominated by direct wind-driven turbulence. Whenf

exceeds some critical value, wind, breaking waves and bub-
ble entrainment are likely to exceed the shear-driven effects
of ice floes that are present, but the value of this threshold in
ice cover is as yet unknown.

Supplement

A copy of the Matlab routines used to calculatekeff in the sea
ice zone has been included as Supplement to this manuscript.
A more up to date version of this code may be available at
http://geotracerkitchen.org. Navigate to “Recipes”.

Supplementary material related to this article is
available online athttp://www.ocean-sci.net/10/17/2014/
os-10-17-2014-supplement.zip.
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