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Abstract The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica
reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface
ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and
salinity, as well as the excess air injection and glacial meltwater content throughout the water column and
in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the
Weddell Gyre are 21.958C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of sur-
face cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the
global value for deep water recharge temperature is 20.448C at 5500 m, which is 1.58C warmer than the
southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north
Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the
impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m,
glacial meltwater averages 3.5& by volume and represents greater than 50% of the excess neon and argon
found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmos-
pheric gas content of Antarctic Bottom Water.

1. Introduction

Deep water formation in the Southern Ocean is a seasonal process that occurs in the subpolar gyres to the
south of the Antarctic Circumpolar Current (ACC). Dense shelf waters form primarily in katabatic wind poly-
nyas [Bromwich and Kurtz, 1984], but also as a result of ephemeral latent heat polynyas [Cheon et al., 2015].
These shelf waters entrain midlayer waters derived from the Circumpolar Deep Water (CDW) of the ACC
close to the shelf and slope regions of Antarctica to form Antarctic Bottom Water (AABW) [Talley, 2008]. Early
concepts held that as much as 70% or more of total AABW originated in the Weddell Sea [Hoppema et al.,
2001; Jacobs, 2004; Meredith, 2013]. However, recent studies indicate that a significant flow of dense water
enters the Weddell Gyre from the east from formation regions close to the Amery Ice Shelf and Cape Darn-
ley Polynya [Ohshima et al., 2013; Jullion et al., 2014; Naveira Garabato et al., 2014].

Biogeochemically, deep water formation and the strength of photosynthesis in the Southern Ocean are
thought to be important to the sink of anthropogenic carbon [Le Qu�er�e et al., 2007], and important as a cli-
mate feedback on the glacial-interglacial cycles of the Pleistocene [Marinov et al., 2006; Hain et al., 2010].
Both the sink and the feedback are related to the exchange of carbon between the deep ocean and the
atmosphere, which in turn depends on the strength of the biological and solubility pumps. The solubility
pump is most directly related to the rate of deep water formation, and consequently the strength of the car-
bon sink may change if the rate of deep water formation changes [Nicholson et al., 2010; Meredith et al.,
2011; de Lavergne et al., 2014]. But the solubility pump for any gas also depends on the gas saturation at the
time that deep water is formed. Gas saturation in turn is a function of water temperature [Hamme and Emer-
son, 2004], wind speed [Wanninkhof, 1992], air bubbles in the surface ocean [Liang et al., 2013], and sea ice
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cover [Loose et al., 2014]. Wind speed and air bubble injection may both have been stronger in the Pleisto-
cene Southern Ocean but sea ice cover may also have been greater making it a challenge to interpret how
the solubility pump may have operated during the Last Glacial Maximum (LGM).

In the Southern Ocean, a significant portion of AABW forms from Circumpolar Deep Water (CDW), a water
mass that is old with a heavy burden of remineralized carbon [Gruber et al., 2009]. This water upwells in the
circumpolar ACC belt, and intrudes into the subpolar gyres in modified form. The relative age of this water
mass is reflected in the low D14C values that persist throughout the Southern Ocean, particularly south of
the Antarctic Polar Front (APF). The formation processes by which CDW contributes to new waters are
such that exposure time at the surface is often too short to ventilate the large burden of DIC, and conse-
quently the excess DIC that did not outgas can represent an important part of the solubility pump [Ito and
Follows, 2013]. Ocean models indicate that the most effective way to keep atmospheric CO2 low (i.e., during
a glacial epoch) is to stem the Southern Ocean off-gassing of CDW [Toggweiler, 1999].

In this study, we explore the imprint of the physical processes that are recorded in the noble gases as
surface water becomes deep water during polynya-driven convection. We estimate the effect of air injec-
tion by bubbles, the temperature, and salinity of sinking shelf water as it leaves the surface to become
deep water, and we account for the input of glacial meltwater to Antarctic Bottom Water. Finally, we use
these results to analyze the differences in recharge properties of deep water that is sourced from the
southern hemisphere versus water that represents a combination of northern and southern hemisphere
recharge.

2. Methods for Determining Recharge Properties

2.1. ANDREX and I6S Cruises
The noble gas and helium isotope data used here were collected in the Atlantic sector of the Southern
Ocean along a section that extends east-northeast from the Antarctic Peninsula, beginning at 628S, 568W,
and terminating near 548S, 308E (Figure 1). This section was completed in two legs, as part of the NERC-
funded ANDREX (Antarctic Deep water Rates of Export) project. The first leg was completed aboard the RRS
James Cook in January 2009—corresponding to the stations east of 198W, and the second leg was com-
pleted aboard the RRS James Clark Ross approximately one year later in March–April 2010 [Jacobs, 2004;
Jullion et al., 2014]. Station 68 was occupied during both cruises for intercomparison purposes; noble gases
and helium isotopes were measured in both cases giving an opportunity to investigate any potential differ-
ences that one year may have had on the tracer fields.

Figure 1. Map of the hydrographic stations in JR239, JC030, and I6S where noble gases and helium isotopes were collected in the Weddell Sea for this analysis.
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Noble gas samples were also collected and analyzed along the CLIVAR section I6S, during February–March
2008. This section extends north from 688S along the 308E meridian from the coast of Antarctica to the coast
of Africa. The noble gas samples only include a subset of this section—the part along the Weddell Gyre
from 688S to 558S (Figure 1).

2.2. Noble Gas Sampling and Analysis
Noble gas samples were collected from a 24 bottle 10 L Niskin rosette using the copper tube cold-weld
method. Water from Niskin bottles is allowed to flow through refrigerator grade copper tubing of either 5/
8’’ or 15 mm ID copper tubing until all air bubbles have been purged. Subsequently, the ends of the tube
are sealed using pneumatic pressure to actuate a hydraulic press equipped with rounded teeth. In the pro-
cess, the side walls of the soft copper tubing are pressed together producing an air-tight seal. Before sam-
pling, the inner volume of the copper tube is decreased by flattening the tube. After cold welding the
sample, the flat section of the tube is made round again, effectively increasing the volume inside the tube
and producing a vacuum inside the sample. The increase in volume allows for thermal expansion of the
water as it warms. By shaking the tube after rerounding, an audible ‘‘pop’’ can be heard, which we believe is
caused by cavitation or dissolved gas coming out of solution to fill the void space. This is confirmation of a
leak-tight seal. Finally, the copper tube sample is rinsed in ethanol or deionized water to ensure the surface
is free from seawater, oils, and other dirt that can lead to corrosion. Leaky copper tubes can also be recog-
nized by corrosion at the tips.

The copper tube sample yields a total of 45 g of seawater on average. In the laboratory, the samples are
inserted into a vacuum-tight bellows chamber. The chamber is sealed and a vacuum of at least 1027 torr
is drawn on the chamber. Samples are opened at both ends by compressing the chamber along the bel-
lows. Subsequent to opening the samples, dissolved gas is quantitatively extracted from the water and
captured inside an aluminosilicate glass bulb that is maintained at 21968C using a liquid nitrogen bath.
After gas extraction, the bulbs are attached to a dual mass spectrometric system and analyzed for He, Ne,
Ar, Kr, and Xe according to Stanley et al. [2009a]. The noble gases are isolated on two cryogenic traps and
selectively warmed to sequentially release each gas into the Hiden Quadrupole Mass Spectrometer
(QMS) for measurement by peak height manometry [Lott, 2001]. The reproducibility from duplicate
samples is listed in Table 2. Precision was 0.5% or better for Ar, Kr, and Xe and approximately 1% for He
and Ne.

Table 2. The Precision of Noble Gas Samples Estimated From by the Coefficient of Variation Between Duplicate Samples Collected
From the Same Niskin Bottle and Analyzed Using the Same Noble Gas Analysis Protocol

JR239 Dupes JC030 Dupes I6S Dupes St. 68 Versus 27

1 r (%) 1r (%) 1r (%) 1r (%)
(N 5 7) (N 5 4) (N 5 5) (N 5 8)

d3He 0.15 0.04 0.03 0.36
[He] 0.39 0.64 0.89 1.11
[Ne] 0.33 0.23 0.59 0.78
[Ar] 0.12 0.39 0.22 0.33
[Kr] 0.20 0.50 0.31 0.53
[Xe] 0.33 0.50 0.50 0.59

Table 1. The End-Member Properties Used in the Nonlinear OMPA Solutiona

RW GMW CDW Air

[Ne] lmol kg21 m.s. 0.086544 0.0081 18.18 ppmv
[Ar] lmol kg21 m.s. 44.46 16.30 0.93%
[Kr] lmol kg21 m.s. 0.00543 0.00395 1.14 ppmv
[Xe] lmol kg21 m.s. 0.000414 0.000590 87 ppbv
d3He, % 21.7 0 10.1 0
u, 8C 21.9 288 1.5 N/A
Sal, psu m.s. 0 34.64 N/A

aThe term m.s. signifies this value is calculated as part of the OMPA model solution. Values for air content are not given in lmol kg21,
rather in mixing ratios. The temperature of RW is distinct from hR because of faster heat exchange at the air-sea interface, so the temper-
ature of ice shelf water is used as the value of T in RW [Foldvik et al., 2004].
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2.3. Nonlinear OMPA Method for Deep Water Recharge Properties
Ne, Ar, Kr, and Xe are unique among the noble gases because they are inert and their primary reservoir on
earth is the atmosphere. The latter distinguishes them from He and Rn, which are both produced by radioac-
tive decay in the lithosphere. The light isotope, helium-3, is also sourced from the mantle and is found in sea-
water that emanates from ocean spreading centers [Jenkins et al., 2015]. This unique source of Ne through Xe,
and their wide range of absolute and temperature-dependent solubility makes them excellent tracers for the
physical processes that impact dissolved gases [Stanley et al., 2006, 2009c; Hamme and Severinghaus, 2007].

As a consequence, we expect the noble gas concentration in deep water to closely reflect the boundary or
formation physical conditions that existed when that water became dense enough to leave the ocean sur-
face and enter the interior. The conceptual picture that frames the details of the processes captured by the
noble gases is found in Figure 2 (left). Deep water masses of the ACC are upwelled along density surfaces in
the circumpolar belt, and penetrate the subpolar gyres in modified form. These waters can intrude on the
Antarctic shelves in certain locations, where air-sea-ice interactions lead to significant heat loss to the
atmosphere, and dramatic changes in salinity. At the surface, these waters may experience wind-driven air-
bubble injection, possibly mitigated by sea ice. Partial ice cover can restrict equilibration and air-sea gas
exchange in some locations and seasons. Cooling primarily takes place from fall into winter; because heat
exchange is faster than gas exchange [Garbe et al., 2004], the water may lose heat faster than it gains gas.
At cold temperatures, density depends predominantly on salinity; however, the heat loss is a key compo-
nent of reducing the ocean temperature to the freezing point and subsequently driving the ice production
that raises the ocean salinity sufficiently for dense water to be formed. The result is gas composition with a
slight excess in Ne from bubbles, and a deficit in Kr and Xe from the rapid cooling. These three processes—
cooling, bubble injection, and sea ice formation are reflected in the noble gas concentration found in deep
water [Hamme and Emerson, 2002; Hamme and Severinghaus, 2007; Nicholson et al., 2010].

Another potentially significant source to the noble gas content in deep water is that derived from glacial
melt. Both the Ross [Loose et al., 2009a] and Filchner-Ronne Ice Shelves [Schlosser et al., 1990] produce gla-
cial melt through interaction with high-salinity shelf water (gn> 28.63 which is a precursor to Antarctic Bot-
tom water [Orsi et al., 2002]). Meltwater concentration also reflects a unique dissolved and noble gas
signature, and the concentration of meltwater is regularly estimated from dissolved gases as well as tem-
perature and salinity [Jenkins and Jacobs, 2008]. However, these estimates are typically carried out using
water in close geographic proximity to ice shelves. Here, we explore the potential for a nonnegligible quan-
tity of meltwater in deep water, further from the source.

The method of reconstructing the recharge temperature from noble gas concentration is known as the noble
gas paleothermometer (NGPT) and it has been applied to water taken from deep aquifers that infiltrated them

Figure 2. After Sigman et al., [2010] schematic of two OMPA circulation scenarios. (left) The separation between CDW whose precursor is the North Atlantic Deep Water (NADW) upwells
in the Weddell Sea and is modified by air-sea exchange and mixing before combining with Recharge Water (RW), which is formed on the Antarctic shelves. The two compose Antarctic
Bottom Water (AABW). (right) No distinction between northern and southern hemisphere water is drawn. Consequently, RW represents an aggregate or ‘‘global’’ value of surface
recharge of the deep ocean from both northern and southern hemispheres.
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during both modern and glacial
periods [Stute and Schlosser,
1993, 2000; Aeschbach-Hertig
et al., 1999; Ballentine and Hall,
1999; Aeschbach-Hertig and Solo-
mon, 2013]. Here we borrow the
analogy of aquifer recharge to
examine the conditions of deep
ocean recharge and expand
upon the application and inter-
pretation to account for the role
of sea ice and glacial meltwater
in producing the noble gas con-
centrations. The noble gas paleo-
thermometer model has been
formulated with a variety of
approaches [Aeschbach-Hertig
et al., 2008], but the version that
most closely matches the quali-
tative picture described above is
as follows:

Ci;sw5Ceq
i ðSR; uR; PÞ1Cexc

i ; Cexc
i 5Avi (1)

The term, Ci,sw is the observed noble gas concentration in surface water (i 5 Ne, Ar, Kr, or Xe), and it is the
sum of the equilibrium gas content, Ceq

i and the excess gas content. Ceq
i depends empirically on seawater

salinity, temperature, and atmospheric pressure. Perturbations in the surface ocean properties of tempera-
ture, salinity and atmospheric pressure can all lead to disequilibrium between the observed gas concentra-
tion (Ci,sw) and the equilibrium or ‘‘saturated’’ gas concentration Ceq

i . The potential for disequilibrium is
represented as follows: Exchanges of heat or freshwater that can lead to changes in temperature and salin-
ity, but may not be accompanied by an equivalent exchange of gas, are accounted for by allowing S and u

to vary as free parameters in the model. Here, we use the terms SR and uR, the ‘‘recharge’’ salinity and
‘‘recharge’’ potential temperature to emphasize that these are end-member values reconstructed from the
dissolved gas concentrations. SR and uR are likely to be distinct from the in-situ values of S and u, because
they reflect the disequilibrium that exists between the observed noble gas concentrations and the noble
gas concentration that is predicted from in-situ S and u. Because the empirical solubility functions are incor-
porated into equation (1), the unique response of each noble gas to changes in temperature and salinity is
accounted for. The other significant source of surface ocean gas disequilibrium – sea level pressure - has
been fixed at P 5 0.97 atm, which is descriptive of the persistent low pressure over the Antarctic coast [Allan
and Ansell, 2006]. This limits some variability in the final solution, but is a necessary tradeoff in comparison
with the other sources of noble gas variability that exist.

The gas concentration is expressed as moles of gas per kg of seawater. Likewise, A is the total quantity of
excess air in mol kg21 of seawater that has been forced into solution. In the absence of sea ice formation,
the value of uR depends on the competition between seasonal heating/cooling and the rate of air-sea gas
exchange. Whereas the equilibration time for non-buffered gases is on the order of a month in the ice-
free surface ocean [Ito et al., 2004; Bender et al., 2011], this equilibration time is likely extended by the
presence of sea ice, therefore uR may be more representative of a weighted average of annual surface
temperature.

Equation (1) describes the properties of surface water at the time of subduction, when surface ocean proc-
esses (including air-sea exchange and sea ice formation) cease to influence the noble gas content of the
water parcel. This formulation is equivalent to previous versions of the noble gas paleothermometer.

However, some additional modification to the NGPT is necessary to account for mixing and entrainment
from other water masses. In this case, we utilize a relatively broad description of water mass properties for
the Weddell Gyre. CDW is low in oxygen due to remineralization of organic carbon (Figure 3) and high in

Figure 3. CTD measurements of potential temperature, salinity, and dissolve O2 during the
ANDREX/I6S cruises. The black lines indicate linear hypothetical mixing lines between
CDW, glacial meltwater (GMW), and recharge water (RW).
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3He by interaction with mid-ocean ridges [Lupton and Craig, 1981], and enters the Weddell Gyre from the
north [Garabato et al., 2007]. CDW is the warmest water mass (up to u 5 2.18C in the ANDREX section,
Figure 3) and is commonly found between 200 and 2000 m [Sievers and Nowlin, 1984]. This characterization
can account for the majority of variability that we observe in the water mass properties; however, it fails to
distinguish entirely between upper and lower CDW, which causes broadening in the u-S distribution above
u 5 1.58C and S 5 34.5 (Figure 3). The addition of cold, salty shelf water [Årthun et al., 2012], and glacial melt-
water [Hellmer, 2004] complete the admixture of water masses that produce Weddell Sea Bottom Water
(WSBW) and Weddell Sea Deep Water (WSDW). Collectively, WSBW and WSDW comprise the AABW in the
Weddell Sea.

We can separate the components or water types in the hydrographic mixture using the Optimal Multipara-
meter Analysis (OMPA) [Poole and Tomczak, 1999]. Briefly, OMPA requires a nonnegative least squares solution
to a system of linear equations that describe the observed tracer content in terms of end-member properties
that have been derived based on physicochemical limits or observations of the water mass in its pure form. We
follow the approach of Tomczak [1981] and define the end-member values based upon the linear portion of
the mixing line in temperature-tracer space, where tracer is any of the other gas tracer constraints. The OMPA
equation for the three source waters on which we are focused in the Weddell Gyre is written as follows:

Ci;SW5fRWCRW
i 1fGMWCGMW

i 1fCDWCCDW
i (2)

Here, fRW, fGMW, and fCDW are the fractions of Recharge water, Glacial meltwater, and CDW that compose the
admixture. The end-member values for RW, GMW, and CDW are found in Table 1.

This system is solved in an error-minimizing sense, provided there are as many water mass tracers as free
parameters. Aside from the water mass tracers, OMPA introduces an additional constraint by requiring that
the water mass fractions sum to 1: 15fRW1fGMW1fCDW. In this version of the OMPA, we seek to determine
the recharge properties of surface water at the time of convection, and to estimate the total air
content that has been introduced by bubble injection. Pure air is not a source water type—it has a negligi-
ble enthalpy and the addition of air has no influence on the salt content of the water. Therefore, the air con-
tent is not explicitly considered in the statements on heat and salt conservation (equation (4)). This leads to
a modified-OMPA equation:

Ci;SW5fRW Ceq
i ðSR; uRÞ1Avi

� �
1fGMWCGMW

i 1fCDWCCDW
i (3)

Equation (3) depends implicitly on the SR and uR through the empirical gas solubility relations, so we permit
the OMPA solution to determine the values of these properties. Therefore, the solution to equation (3)
requires a nonlinear optimization to allow for iteration and convergence around the recharge temperature
and salinity. As with the NGPT method [Aeschbach-Hertig et al., 1999], we use a bounded nonlinear solver
implemented in MatlabTM.

In total, there are six free parameters—SR, uR, A, fRW, fGMW, and fCDW which requires at least six water mass
tracers. In addition to the noble gases, potential temperature (u), salinity, and the continuity constraint are
added to the system described in equation (3),

15fRW1fGMW1fCDW

S5fRWSR1fGMWSGMW1fCDWSCDW

u5fRWuSW 1fGMWuGMW1fCDWuCDW

(4)

The potential temperature of shelf water during convection (uSW) is fixed at 21.98C (Table 1), instead of
using uR from the NGPT, because of differences in the rate of air-sea heat and gas exchange.

Here we also make use of the saturation anomaly, which is defined as the percent deviation from saturation
equilibrium with moist air, as determined from the in situ potential temperature and salinity,

Di5
Cin situ

i

Ceq
i ðS; uÞ

21

� �
3100 (5)

The anomaly indicates whether the given sample of water would want to consume or release gas if it was lifted
to the surface and brought into contact with the atmosphere. The equilibrium solubility values (Ceq

i ) are
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Figure 4. Tracer distributions of d3He, Ne, Ar, Kr, and Xe along the two ANDREX cruises (JR239 and JC030) and along the CLIVAR I6S line.
The white numbers at the bottom match the station enumeration used during each cruise.
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calculated using the solubility
functions of Weiss, [1971] for He
and Ne, Hamme and Emerson
[2004] for Ar, Weiss and Kyser
[1978] for Kr, and Wood and
Caputi [1966] for Xe, after a 2%
decrease in the solubility values
as suggested by Hamme and
Severinghaus, [2007].

3. Results

3.1. Noble Gas Distributions
in the Atlantic Sector of the
Southern Ocean
Broadly speaking, the distribu-
tion of heavier noble gases (Fig-
ure 4) largely reflect the
distribution of temperature that
is found in the Weddell Gyre.
Neon is the exception—its con-
centration increases almost

monotonically from its lowest value of �7.91 3 1024 lmols kg21 at the ocean surface to maximum of 8.6
3 1024 lmols kg21 below 5000 m. The northernmost deep waters along the zonal section (Figure 4, mid-
dle) contain the highest neon concentration. This monotonic tendency does not hold for Ar, Kr, and Xe.
These three gases all show the greatest concentration near the ocean surface and then decrease to their
lowest values in the core of CDW between 200 and 1500 m. Below 2000 m, their concentrations begin to
increase again, and they are maximal in the deep water below 5000 m. This pattern is a reflection of the
temperature effect on gas solubility, i.e., that warmer water holds less gas. The distribution of d3He follows a
reciprocal distribution compared to Xe; its lowest value near the ocean surface is 21.7% and d3He is highest
in the core of CDW.

A similar dichotomy between Ne and the other noble gases is apparent in the saturation anomaly (D, Figure 5).
Ar, Kr, and Xe first decrease from the surface to approximately 200 m depth and then gradually increase from
�1000 m to the seafloor. Ne does not decrease from 0 to 200 m, instead the DNe increases quickly from 0 to
200 m and then more gradually thereafter, although the scatter in the data at the surface makes the Ne trend
appear less pronounced. The trends in saturation anomaly with depth are consistent with profiles from Hamme
and Severinghaus [2007] from the deep water sampled in the North Pacific below 1000 m. Yet, both Hamme
and Severinghaus [2007] and Emerson et al. [2012] find Ar excesses in the permanent thermocline, which they
interpret to arise from low diapycnal mixing in that area. The thermocline at 408N has very different ventilation
history than in the Weddell Gyre. The CFC tracer ages range from 23 to 27 years [Emerson et al., 2012], indicat-
ing that the thermocline is ventilated locally in the North Pacific. In comparison, the Southern Ocean thermo-
cline is composed mostly of CDW, the remnant of NADW where cooling and rapid convection can lead to gas
deficits, even in argon.

The magnitudes of the values of Di reflect the large differences in solubility between Ne and Xe. In proxim-
ity to the air-sea interface, all of the gases are closest to saturation equilibrium. Moving deeper, Ar, Kr, and
Xe are all undersaturated by 0.5–2%, with the more soluble gases (Kr and Xe) showing the most depleted
saturation anomaly. These gas deficits hint that upon last contact with the atmosphere the water lost heat
faster than the gas could equilibrate. The deficit in heavy noble gases can also reflect an addition of glacial
meltwater.

On the other hand, both neon and helium are over saturated: Ne by 3% and He by more than 7% below
5000 m. These excesses reflect the addition of glacial meltwater and the injection of air bubbles at the
ocean surface. They also reflect the fact that neon and helium solubility do not respond as strongly to the
decrease in temperature as Ar through Xe. The changes in Di that are caused by changing temperature, by

Figure 5. The saturation anomaly of the five noble gases, calculated using the in situ
potential temperature and salinity from CTD hydrography.
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the addition of up to 1% glacial meltwater, by the injection of air bubbles at a constant wind speed of 10 m
s21 for 25 days, and by the formation of 1.5% sea ice over the water column are illustrated in Figure 6. This
is similar to the scenario presented by Loose and Jenkins [2014] who demonstrated that the light and heavy
noble gases are able to distinguish air bubble injection by wind and waves from glacial meltwater addition.
This distinction between GMW and air bubbles relies primarily on the effect that freshening and latent heat
have on gas solubility. That is, when glacial ice melts in seawater, there is a large decrease in temperature,
consumed by the latent heat of fusion. This cooling and freshening of the admixture increases the solubility
for gases like Kr and Xe. For these two gases the increase in solubility is greater than the addition of gas
trapped in glacial ice [Martinierie et al., 1992]. Consequently, the saturation anomalies for Kr and Xe are
decreased by glacial melt. The trend in Ne is toward a strong increase in Di—reflecting that air trapped in
ice has very significant quantities of Ne and these gases have a very low solubility in water. Pure glacial
meltwater has a saturation anomaly of DNe 5 940% [Hohmann et al., 2002], demonstrating their elevated
gas concentration, compared to ambient seawater at the freezing point. DKr 5 220% and Xe 5 241% in
pure GMW.

3.2. Nonlinear OMPA Solution to the Noble Gas Paleothermometer
Solving equations (3) and (4) was carried out using d3He, Ne, Ar, Kr, and Xe as tracer constraints from gas
samples collected during the two ANDREX and the single I6S cruises. In the OMPA solution, all water mass
fractions are constrained to vary between 0 and 1 [Tomczak, 1981]. Here, we employ additional constraints
by adding upper and lower bounds to all parameters in the OMPA solution. The bounds on SR are [0, 40]
and on uR are [225, 25]8C, reflecting values that are far outside what would be expected from the solution.
The upper bound on air content was established by estimating the total number of mols of air in the space
occupied by 1 kg of seawater. One kg of seawater occupies ca. 0.9728 L; at STP this corresponds to 43,391
lmol, and this is the upper bound. We set the lower bound on air to be 0. Whereas there are some

Figure 6. Changes in the noble gas saturation anomaly as a result of seasonal heating and cooling (thin black line), air bubble injection
(dashed black line), up to 1% glacial meltwater addition (solid blue line), and 1.5% sea ice formation (solid magenta line), which is equiva-
lent to 4.5 m of sea ice formation above a 300 m water column.

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 9



environmental flows, such as
aquifers where a decrease in
total gas pressure can occur,
leading to a negative value for
air content [Aeschbach-Hertig
et al., 2008], a similar occurrence
in the water column would
imply cavitation where the
water pressure drops below the
total gas pressure. Under ocean-
ographic conditions, there is no
evidence for this, so we have
set the lower bound on air con-
tent at 0. To ensure that each
equation in (2) and (3) above is
given equal weight, we have
included a weight matrix in the
objective function. We use the
reciprocal of the standard devi-
ation to weight the noble gases
and we adjust the temperature,
salinity and continuity con-
straint so they have the same
weight as the noble gases.

The quality of the OMPA solu-
tion is typically evaluated by
examining the residuals or
model-data misfit. To compute
the residuals, we use the output
from the OMPA model (fRW,
fGMW, fCDW, A, uR, and SR)
together with equations (2) and
(3) above to reconstruct the in
situ values for Ne, Ar, Kr, Xe, u,
and S. The residuals are
expressed in % in Figure 7. The
average misfit is 0.98% for u,
0.04% for S, and 0.22, 0.29, 0.41,
and 0.05% for Ne, Ar, Kr and Xe,
respectively. All noble gas misfits
are less than 2%. The continuity
misfit is 0.1%. Generally, a misfit

of less than 5% is considered to be of sufficient quality to accept [Karstensen and Tomczak, 1998]. It is worth
noting that the temperature misfit is deceptively large—normalizing by temperature values that are very close
to zero inflates the apparent misfit when expressed as ‘‘percent.’’ The average absolute value of the tempera-
ture misfit is 2.9 3 1024 8C.

To estimate the uncertainty in the nonlinear OMPA solution, we first tried a Bootstrap resampling statistic
using the residuals for each of the noble gases, as well as temperature and salinity [Mooney, 1993]. However,
we found that random sampling of the residuals caused the solution to converge to the same values of SR, uR,
A, fsw, fgmw, and fcdw. This was true for 1000 random resample events at every point in the ANDREX/I6S data
set. Setting aside the conclusion that the solution is robust, we next used the noble gas precision (Pr) from
duplicates in Table 2, and a random sampling from the standard normal distribution—Nð0; 1Þ to perturb the
solution,

Figure 7. The difference between OMPA reconstruction (model) of the observations, and
the ANDREX/I6S observations (data) of temperature, salinity, and continuity values (top
plot and equation (4) in the text) and noble gases (bottom plot and equation (3) in the
text).
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Cobs
i ðx; zÞ5Cobs

i ðx; zÞ 11
Pr

100
� Nð0; 1Þ

� �
(6)

This resampling of the population of solutions was used to estimate 95% confidence limits on the solution.
The average of the 1000 resampling events is reported as the solution. The value of Pr for u and S was esti-
mated as 0.0018C and 0.005; the former comes from quoted precision since temperature far exceeds the
accuracy of other parameters and the latter is the calculated offset between ANDREX data and GLODAP
data as determined by Jullion et al., [2014]. Figure 8 displays a histogram of the bootstrap solutions to the
nonlinear OMPA. The parameter space is unimodal for all parameters save Air, which appears to be bimodal
near 0 and then follow a uniform distribution between 0 and 15 lmols kg21. The remainder of the parame-
ters show somewhat asymmetric distributions. Figure 9 displays the depth profile of each parameter sepa-
rated by the three cruises, JR239, JC030, and I6S. The shaded area represents the p 5 0.95 confidence
interval for each parameter. Both the parameters and their confidence interval have been regionally aver-
aged in Figure 9.

4. Discussion

The vertical distribution of CDW is consistent with a canonical distribution of CDW in the Weddell Gyre: it
exhibits the greatest abundance between 500 and 1000 m in the I6S line. This particular section intersected
part of the ACC [Jullion et al., 2014] where the core of CDW is found. CDW is at its lowest abundance in the
JR239 section, close to the Antarctic Peninsula. Below 2000 m, CDW gradually decreases and RW increases
until the two water types are each approximately 50% by volume. Together these two water masses repre-
sent 99.5% or more of the total water mass content. The remainder is glacial meltwater and this ranges
between 2 and 3&, below 2000 m. The solution reveals very little excess air content between 1000 and
4000 m. Air content from 0 to 1000 m decreases from 12 to 0 lmol kg21, with the greatest abundance
found in the JC030 line, which is the furthest north. This is at most around 1% of the total capacity of air
that can be dissolved in seawater, assuming u 5 0, S 5 34. In other words, the excess air content is not a
large percentage of the total dissolved gas.

Figure 8. Histogram of the 1000 bootstrap resampling events using a standard normal distribution and the measurement precision to
estimate the potential variability in the solution. The red bar represents the mean value—the value that is used as the solution outcome.
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The horizontal average in uR ranges from 24 to 218C above 1500 m, but reaches a near constant value of
�21.958C for all three cruises, below 2000 m. Recharge salinity is saltier than ambient salinity, ranging from
35.5 psu near 500 m to 34.8 psu at 5500 m. The uncertainty in the solution becomes very large for u and S
above 1500 m and particularly in the area where CDW is maximal. In fact, we excluded 37 samples from
above 1500 m because they converged against the temperature and salinity bounds, and we therefore
treated these samples as nonconforming with the current mixing model. The degradation in the fit quality
is also evident in the u and S residuals (Figure 7). This can be explained by appreciating that water between
200 and 2000 m has very different origins from much of the rest of the water found in the Weddell Gyre
water column. Having originally formed in the North Atlantic, with input from the subtropical Pacific [Well

Figure 9. A block average of the nonlinear OMPA solutions for the OMPA parameters, fscw, fCDW, fgmw, air, recharge temperature, and
recharge salinity. The transparent-shaded regions represent the block averaged 95% confidence interval on the solution from each of
the three cruises. The dashed lines in the temperature and salinity panels are block averages of the measured u and S from each
cruise.

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 12



et al., 2003], the core of water found between 200 and 2000 m may not conform well to this water mass
model, which dilutes pure CDW with shelf water from coastal Antarctica.

On average, the recharge temperature and salinity are colder and saltier than the majority of the ambient
water found in the water column and these recharge values are a reflection of the conditions under which
this water has formed. Before we discuss this in more detail, it bears commenting on our choice to allow uR

and SR to vary for each noble gas water sample, rather than enforce a single value for all recharge water at all
depths. Previous work has indicated that the variation in the values of uR and SR represent the complexity of
the downslope ventilation process around Antarctica. Orsi et al., [2002] used CFCs to demonstrate that venti-
lated water enters a broad range of density horizons, and concluded this was caused by shelf water of varying
properties achieving neutral density at a variety of depths. Based upon the observation that binning samples
by depth tends to aggregate a significant amount of spatial structure in the three profiles in Figure 9,
we elected to solve nonlinear OMPA on a sample-by-sample basis and allow the variation in recharge
temperature and salinity to emerge and then evaluate this variation critically against physical oceanographic
realism.

4.1. The Effect of Sea Ice on hR and SR

The average value of uR below 1000 m is 21.958C. The uncertainty bounds indicate that uR could range
from 23 to 21.58C. uR is 1.38C colder than the ambient temperature below 1000 m, and is only slightly
warmer than shelf water, which ranges from 21.9 to 22.28C [Årthun et al., 2012]. However, shelf water is
cooled by its interaction with the Filchner-Ronne Ice Shelf [Foldvik et al., 2004], so it is initially surprising that
uR should reach this temperature (the cold end-member of glacial melt is accounted for by the GMW water
type, see equation (3) and Table 1). Instead, this cold value for uR indicates that sea ice may also be a factor
in setting the value of uR. We will discuss this further in the following paragraphs.

As reported above in section 4.0, the recharge salinity is as much as 0.6 psu saltier than ambient salinity
below 2000 m, and SR exceeds measured shelf water salinities by as much as 0.2 psu [Foldvik et al., 2004].
This increase in salinity is indicative that sea ice may influence the noble gas recharge concentrations. That
is, the excess salinity may be an indirect reflection of salt (or more appropriately, solute) rejection during
sea ice formation. It has been established through laboratory experiments that most gases are excluded
from the ice matrix during freezing [Killawee et al., 1998]. The process of sea ice desalination is complicated
and appears to take place in stages; there is some solute exclusion during ice growth [Loose et al., 2009b],
and also residual gravity drainage throughout the sea ice life cycle [Notz and Worster, 2009]. For this discus-
sion, however, we do not attempt to distinguish between the two but only observe how solute rejection
may impact the gas properties of recharge water. During the sea ice growth stage, the exclusion efficiency
is not the same for all gases. Instead, there may be a fractionation based upon the Van der Waals Radius of
the molecule [Namiot and Bukhgalter, 1965]. The process is approximated by the effective partitioning coef-
ficient between the ice and water (kiw),

kiw5
Cice

CBW
(7)

Cice is the bulk solute concentration in ice and CBW is the concentration of gas in the ‘‘bulk water’’ beneath
the ice [Killawee et al., 1998]. A value of kiw> 1 indicates that the gas is preferentially incorporated into the
ice. This is not the case for most gases, but there is evidence that for helium kiw 5 1.2–2.1, and four studies
have found values of kiw for neon ranging from kiw 5 0.82 to kiw 5 0.9 [Namiot and Bukhgalter, 1965; Top
et al., 1988; Malone et al., 2010; Lovely et al., 2015]. For Ar, Kr, and Xe, there is some ambiguity in the values
of kiw; Top et al. [1988] find 0.49, 0.4, and 0.5 whereas Malone et al., [2010] report values of 0.01, 0.06, and
0.05 although these values are referenced to solubility equilibrium, so they are not identical to kiw. For salin-
ity, kiw is also likely to be �0.3, based upon measurements of bulk salinity in sea ice that usually range
between 6 and 10 g/kg of ice [Eicken, 2003].

To map the effect of sea ice formation on noble gas saturation anomalies, we use these values for kiw 5 1.9,
0.9, 0.49, 0.4, 0.5 for He through Xe, and kiw 5 0.3 for salinity. The effect of ice formation on temperature is not
entirely clear. There should be a latent heat release during ice formation, but it is just as likely that this heat is
radiated or conducted to the atmosphere. Utilizing these partitioning coefficients, we can plot the tendency
Di for each of the noble gases (see Figure 6). This plot is similar to Figure 2 from Hamme and Emerson [2002],
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however those authors used a value of kiw 5 1.4 for Ne. The perturbation, Di, that would result from producing
sea ice out of 1.5% of the water column is also plotted in Figure 6. This is equivalent to 4.5 m of ice formation
over a 300 m mixed layer, which is similar to the sea ice production estimate of Årthun et al., [2012].
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Figure 10. Sections of nonlinear OMPA parameters along the two ANDREX cruises (JR239 and JC030) and along the CLIVAR I6S line. White station numbers at the bottom are the station
numbers used during each cruise.
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The effect of sea ice production on Di is not predicted to be nearly as strong as air bubble injection nor as
glacial meltwater (Figure 6), but the perturbation in DHe is greater than 3% and DXe is nearly 1.5%, which
are fivefold larger than the analytical precision and therefore presumed quantifiable. Sea ice formation
(with solute rejection) is parametrically very similar to an increase in water temperature represented by the
heating-cooling line in Figure 6. This observation implies the OMPA solution may compensate ‘‘sea ice for-
mation’’ with a colder value of uR and indeed it is possible to increase uR by assigning a constant value to SR

that is less than 34.8, but this degrades the model-data misfit in all samples below 2000 m, reminding us
that the OMPA finds the optimum solution given the tracer constraints. The sensitivity of the solution to
these compensating factors is mapped by the uncertainty in Figure 9, and we can see that in all instances
below 2000 m, uR is less than the ambient temperature, and SR is saltier than the ambient salinity. Heuristi-
cally, the solution of high recharge salinity matches what we understand to take place during deep water
formation: that sea ice formation leads to salt injection to the ocean.

Finally, one more line of evidence supports the estimate of recharge salinity greater than 35 psu. Brown
et al. [2014] used oxygen isotopes to estimate that up to 2.1% sea ice brine fraction (or negative sea ice
melt f-SIM) can be observed in WSBW. Here we use an ‘‘average’’ value for deep water from their paper
(f-SIM 5 1.5%) and a representative salinity of sea ice brine (Sbr 5 90) to reconstruct the recharge tempera-
ture. Brine salinity can range from 37 to 235& depending on the salinity of the formation water, the air
temperature, and ice growth rate [Cox and Weeks, 1983]. Starting with a surface salinity of 34 psu, we esti-
mate the following recharge salinity,

SR 5 Ssurface10:015Sbr

53410:015ð90Þ

535:35

(8)

Equation (8) indicates it is plausible to begin with a surface water salinity and add brine from sea ice forma-
tion to achieve recharge salinity similar to that estimated by the OMPA solution.

4.2. Glacial Meltwater in the OMPA Solution
The OMPA solution finds undetectable quantities of glacial meltwater across most of the surface ocean (Fig-
ure 10). This may in part reflect that the noble gases near the ocean surface can lose the meltwater signal
to air-sea exchange. GMW is also lower between 200 and 2000 m, although the solution has the greatest
uncertainty in the core of CDW so very little confidence can be associated with any interpretation. Below
1000 m, the meltwater fraction increases to an average near 3.5&, with the strongest signal found in the
water below 1000 m along the JC030 line and below 3000 m on the I6S line.

The solution, therefore, indicates that meltwater is entrained into deep water, although some or all this
meltwater signal may not originate in the Weddell Sea, and instead may be transported from deep water
formation sites further east along the coast [Jullion et al., 2014]. In the Weddell Sea, some dense shelf water
sinks along the retrograde slope beneath the Filchner-Ronne Ice Shelf and produces basal melt near the
grounding line [Bayer et al., 1990]. This water exits the cavity as Ice Shelf Water and becomes incorporated
into WSBW, which is the densest component of AABW in the Weddell Sea [Foldvik et al., 2004]. However,
basal melt occurs at multiple depths in the ice shelf cavity causing glacial melt to become entrained in
water masses that are less dense and therefore higher in the water column. It is important to note that
some modification of the glacial meltwater likely takes place as a result of marine ice formation [Bombosch
and Jenkins, 1995]. This ice is bubble-free and slightly saltier than glacial ice [Oerter et al., 1992]. As with sea
ice, the incorporation of salt may reflect that some gases are also incorporated into the marine ice [Killawee
et al., 1998], but to our knowledge, this marine ice has not been analyzed for noble gas concentration.

For the purposes of comparison, the OMPA estimate of glacial meltwater is within the range of meltwater
content that has been observed around Antarctica. Offshore of the Amundsen Sea where warmer CDW
comes into direct contact with glaciers, GMW content can reach 20& [Hohmann et al., 2002]. In the Ross
Sea, GMW content has been observed up to 7& near the front of the Ross Ice Shelf [Loose et al., 2009a]. In
the Weddell Sea, Schlosser et al. [1990] observed Ice Shelf Water spilling off the continental shelf near 738S
and determined from 4He and O-18 that the glacial melt in ISW was 4&. This is �0.5& more GMW than we
estimate further north in WSBW. However, it remains unclear how much ISW is diluted to produce WSBW.
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Foldvik et al. [2004] multiplied the ISW flux by 2.7 to get WSBW production. If that can be considered a dilu-
tion factor, then the GMW content in WSBW is closer to 1.5&. The OMPA solution depicts GMW below
4000 m of �3.5&, indicating that the OMPA solution might be an overestimate. However, meltwater is
found throughout the water column, including in WDW [Schlosser et al., 1990], indicating that glacial melt is
found in both precursors (ISW and WDW) to WSBW. Therefore, it is plausible that the meltwater content in
WSBW is 3–4&.

Assuming these results are representative of WSBW and AABW, which is also fed by shelf water around Ant-
arctica, it is interesting to note that the noble gas content in deep water is significantly elevated by glacial
meltwater. A 3& addition of glacial meltwater increases the Ne concentration in bottom water by nearly
3%, and the DNe by a similar amount (Figure 6). In comparison, the same meltwater addition increases Xe
concentration by only 0.3%, and decreases DXe by around 1%. This implies that the bulk of the Ne satura-
tion anomaly and �50% of the Xe saturation anomaly in Figure 5 could be attributed to glacial meltwater.
For Ar, Kr and Xe, temperature is another major contributing factor to the anomaly. These results imply that
GMW has a nonnegligible impact on noble gases found in AABW.

4.3. How Do the Global Recharge Properties Differ From Those of the Southern Hemisphere?
Circumpolar deep water contains a record of deep ocean recharge that takes place in the northern hemi-
sphere. Consequently, we can interpret the water samples from the Weddell Gyre in the framework of the
‘‘global’’ recharge properties by removing the distinction between northern (CDW) and southern (RW) hemi-
spheric origins. Hereafter, we refer to the solution described by equations (3) and (4) as the southern hemi-
sphere (SH) solution. In the present version, represented by equation (9) below, we combine the recharge
properties from both hemispheres into a single water type—RW. uR and SR now represent global values of
deep water recharge. Figure 2 gives a conceptual picture of how the two NGPT-OMPA scenarios differ in
their conception of the circulation. The choice of tracer conservation equations is also slightly altered.
Whereas d3He is an excellent tracer for separating CDW, it is of little value for the global recharge solution,
because it is added to NADW in the deep sea, so it does not measurably contribute to understanding sur-
face processes. For temperature, we can attempt to assign a value to RW that represents some ‘‘average’’ of
northern and southern hemisphere water during deep convection. Instead, we opt to use the recharge tem-
perature, despite the acknowledged shortcoming that heat and gas exchange are not always proportional.
This allows us to compare the solution to equation (9) for each water sample, independent of a specified
end-member value for temperature during convection in RW. In total, we use six tracer constraints left—Ne,
Ar, Kr, Xe, and S, u to solve for five free parameters: fRW, fGMW, A, uR, and SR.

Ci;SW5fRW Ceq
i ðSR; uRÞ1Avi

� �
1fGMWCGMW

i

15fRW1fGMW

S5fRWSR1fGMWSGMW

u5fRWuR1fGMWuGMW

(9)

We refer to equation (9) as the northern 1 southern hemisphere solution (NH1SH). As with the NH solution,
we compute the NH1SH solution for the entire vertical distribution of ANDREX/I6S samples using the same
bootstrap sampling with replacement from the error distribution in equation (6).

Not surprisingly, SR hews more closely to the in situ salinity since fGMW is the only water mass that can cause
SR to deviate from ambient S; however; SR below 4000 m is greater than S by �0.1, and this is qualitatively
consistent with southern hemisphere sea ice in the deep water admixture. uR in the NH1SH solution is
nearly 0.38C warmer than the in situ temperature below 4000 m, and it is 1.58C warmer than the SH
recharge temperature (compare Figure 9 to –11). The increase in recharge temperature reflects a warmer
northern hemisphere end-member. The fact that the temperature is warmer than the in situ temperature
indicates that the surface temperature at which seawater equilibrates is warmer on average than when that
water leaves the surface. Heat diffusion and geothermal inputs would act to make this difference smaller,
hence the observed difference in temperature is likely a lower bound.

Whereas there is almost no excess air in RW from the SH solution (Figure 9), the Recharge Water from the
NH1SH solution indicates between 10 and 15 lmols kg21 is present throughout the water column, and
maximal at the depths of CDW or northern hemisphere recharge. The GMW content in the water column

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 16



below 2000 m is similar in both SH and NH1SH solutions, indicating 3–3.5&. Above 2000 m, the GMW con-
tent is 2& in the NH1SH solution, which differs from the SH solution. The estimate of GMW content should
be the same in both solutions, so this shift may reflect the fact that air content and GMW are parametrically
similar using the noble gases [Hamme and Emerson, 2002; Loose and Jenkins, 2014]. If we compare the noble
gas content in 12 lmol kg21 of Air, it is equivalent to 2.45& glacial meltwater. The uncertainty on both
parameters reflects the difficulty of separating the two.

4.4. How Might the NGPT Recharge Properties be Different During the LGM?
Sigman et al., [2010] present a scenario for ocean circulation during the Last Glacial Maximum. In this sce-
nario, water in the deep ocean is colder and more dense than today [Adkins and Schrag, 2001]. Conse-
quently, water formed in the North Atlantic may not have penetrated the deep sea. In its place, AABW

Figure 11. The solution to nonlinear OMPA parameters removing CDW as a water type, so that RW represents an aggregate or ‘‘global’’ value recharge from both the northern and
southern hemispheres.
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expanded to fill the entire deep sea, and ventilation (based on radiocarbon ages) may have been slower
than it is today [Adkins and Pasquero, 2004; Burke et al., 2015].

How might the values of uR and SR during the LGM compare to uR and SR in the modern ocean? If the pre-
cursor to CDW (NADW) was not part of the admixture in AABW, the southern hemisphere recharge proper-
ties would be more pronounced, leading to colder, saltier recharge water. In this regard, the global values
of uR and SR would migrate from the NH1SH solution (blue line) toward the SH solution presented in the
first part of the paper—and likely they would be colder and saltier than the modern recharge u and S
(Figure 12).

It is unclear whether glacial meltwater content would be higher in the LGM; on the one hand, an expanded
Antarctic Ice Sheet [Anderson et al., 2002] presents more surface area for ocean melting, but ice sheet melt
rate depends in part on delivery of heat in the form of water that is above the freezing point [Holland et al.,
2008]. While saltier bottom water during the LGM [Adkins and Schrag, 2001] lowers the freezing point, it
was also probably accompanied by colder water temperatures around Antarctica. Indeed, Adkins [2013]
argue that it is not possible to produce saltier bottom water without first cooling the water column, mean-
ing the relative temperature difference between ambient water and the freezing point may not have been
much larger during the LGM. Whether there is more meltwater in bottom water or not, it may be difficult to
distinguish that from excess air, without the aid of temperature as a water mass tracer constraint. The
hypothesized presence of sea ice is thought to reduce air-sea gas exchange [Stephens and Keeling, 2000],
especially the kind of wave-driven exchange that injects excess air. Therefore, we might expect that the
water column during the LGM had even less air content than it does today.

5. Conclusions

The OMPA solution to the noble gas paleothermometer gives insight into the formation conditions for
water that recharges the deep ocean in the Weddell Sea. The solution finds a recharge temperature of
�21.958C, which is similar in temperature to Ice Shelf Water in the Weddell Sea [Foldvik et al., 2004]. The

Figure 12. A comparison of the uR and SR values for global (NH1SH) and southern hemisphere (SH) recharge solution. Both results are
derived from the OMPA-NGPT solution to water samples from the Weddell Gyre. The NH 1 SH solution described in section 4.3 represents
the combined influence of both CDW and Shelf Water on the global recharge temperature. In comparison, the SH described in section 3
separates the influence of CDW to determine the recharge temperature of southern hemisphere water only.
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recharge salinity is saltier than in situ salinity with a value of 35.0 at 5500 m. Based upon our limited under-
standing of solute exclusion from sea ice, these cold, salty recharge properties reflect not just surface cool-
ing, but the influence of sea ice formation on the noble gas concentrations in deep water. A more thorough
empirical understanding of the influence of sea ice on deep water gas budgets would be helpful for inter-
preting deep-water noble gas concentration, particularly with regard to how the noble gases are partitioned
between water and ice.

Porewater from the deep sea might be interpreted using the paleothermometer; the nonlinear OMPA solu-
tion indicates that the global recharge temperature is 20.448C at 5500 m, which is 1.58C warmer than the
southern hemisphere recharge temperature. We predict the global recharge properties would move toward
the southern hemisphere recharge properties in the LGM, if water from the North Atlantic ceases to act as a
precursor to AABW, as proposed by Sigman et al., [2010] and others.

Finally, the nonlinear OMPA solution finds that glacial meltwater in Weddell Sea Bottom Water is near 3.5&.
Taken together with the small amount of excess air present, this indicates that excess neon (and helium) in
AABW may be dominated by meltwater input. This indicates that interpretations of the global distribution
of the noble gases need to account for the contribution of meltwater in the Southern Hemisphere. This con-
clusion is tempered slightly by the observation that it is difficult to separate excess air from glacial melt
without the aid of temperature as a water mass tracer.

References
Adkins, J. F. (2013), The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, doi:10.1002/palo.20046.
Adkins, J. F., and C. Pasquero (2004), Deep ocean overturning: Then and now, Science, 306(5699), 1143–1144, doi:10.1126/science.1105531.
Adkins, J. F., and D. P. Schrag (2001), Pore fluid constraints on deep ocean temperature and salinity during the Last Glacial Maximum, Geo-

phys. Res. Lett., 28(5), 771–774, doi:10.1029/2000GL011597.
Aeschbach-Hertig, W., and D. K. Solomon (2013), Noble gas thermometry in groundwater hydrology, in The Noble Gases as Geochemical

Tracers, edited by P. Burnard, pp. 81–122, Springer, Berlin.
Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (1999), Interpretation of dissolved atmospheric noble gases in natural waters,

Water Resour. Res., 35(9), 2779–2792, doi:10.1029/1999WR900130.
Aeschbach-Hertig, W., H. El-Gamal, M. Wieser, and L. Palcsu (2008), Modeling excess air and degassing in groundwater by equilibrium parti-

tioning with a gas phase, Water Resour. Res., 44, W08449, doi:10.1029/2007WR006454.
Allan, R., and T. Ansell (2006), A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004,

J. Clim., 19(22), 5816–5842, doi:10.1175/JCLI3937.1.
Anderson, J. B., S. S. Shipp, A. L. Lowe, J. S. Wellner, and A. B. Mosola (2002), The Antarctic Ice Sheet during the Last Glacial Maximum and

its subsequent retreat history: A review, Quat. Sci. Rev., 21(1–3), 49–70, doi:10.1016/S0277-3791(01)00083-X.
Årthun, M., K. W. Nicholls, and L. Boehme (2012), Wintertime Water Mass Modification near an Antarctic Ice Front, J. Phys. Oceanogr., 43(2),

359–365, doi:10.1175/JPO-D-12-0186.1.
Ballentine, C. J., and C. M. Hall (1999), Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion

of noble gas concentrations in water, Geochim. Cosmochim. Acta, 63(16), 2315–2336, doi:10.1016/S0016-7037(99)00131-3.
Bayer, P. S. P. R., A. Foldvik, T. Gammelsrod, G. Rohardt, and K. O. M’’unnich (1990), Oxygen 18 and helium as tracers of Ice Shelf Water and

water/ice interact in the Weddell Sea, J. Geophys. Res., 95(C3), 3253–3263, doi:10.1029/JC095iC03p03253.
Bender, M., S. Kinter, N. Cassar, and R. Wanninkhof (2011), Evaluating gas transfer velocity parameterizations using upper ocean radon dis-

tributions, J. Geophys. Res., 116, C02010, doi:10.1029/2009JC005805.
Bombosch, A., and A. Jenkins (1995), Modeling the formation and deposition of frazil ice beneath Filchner-Ronne ice shelf, J. Geophys. Res.,

100(C4), 6983–6992, doi:10.1029/94JC03224.
Bromwich, D. H., and D. D. Kurtz (1984), Katabatic wind forcing of the Terra Nova Bay polynya, J. Geophys. Res., 89(C3), 3561–3572, doi:

10.1029/JC089iC03p03561.
Brown, P. J., M. P. Meredith, L. Jullion, A. Naveira Garabato, S. Torres-Vald�es, P. Holland, M. J. Leng, and H. Venables (2014), Freshwater

fluxes in the Weddell Gyre: Results from d18O, Philos. Trans. R. Soc. A, 372(2019), doi:10.1098/rsta.2013.0298.
Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson (2015), The glacial mid-depth radiocarbon bulge and its

implications for the overturning circulation, Paleoceanography, 30, 1021–1039, doi:10.1002/2015PA002778.
Cheon, W. G., S.-K. Lee, A. L. Gordon, Y. Liu, C.-B. Cho, and J. J. Park (2015), Replicating the 1970s’ Weddell Polynya using a coupled ocean-

sea ice model with reanalysis surface flux fields, Geophys. Res. Lett., 42, 5411–5418, doi:10.1002/2015GL064364.
Cox, G. F. N., and W. F. Weeks (1983), Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306–316.
de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov (2014), Cessation of deep convection in the open Southern Ocean

under anthropogenic climate change, Nat. Clim. Change, 4(4), 278–282.
Eicken, H. (2003), Growth, microstructure and properties of sea ice, in Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology,

edited by D. N. Thomas and G. S. Dieckmann, Blackwell, Malden.
Emerson, S., T. Ito, and R. C. Hamme (2012), Argon supersaturation indicates low decadal-scale vertical mixing in the ocean thermocline,

Geophys. Res. Lett., 39, L18610, doi:10.1029/2012GL053054.
Foldvik, A., T. Gammelsrød, S. Østerhus, E. Fahrbach, G. Rohardt, M. Schr€oder, K. W. Nicholls, L. Padman, and R. A. Woodgate (2004), Ice shelf

water overflow and bottom water formation in the southern Weddell Sea, J. Geophys. Res., 109, C02015, doi:10.1029/2003JC002008.
Garabato, A. C. N., D. P. Stevens, A. J. Watson, and W. Roether (2007), Short-circuiting of the overturning circulation in the Antarctic Circum-

polar Current, Nature, 447, 194–197, doi:10.1038/nature05832.
Garbe, C. S., U. Schimpf, and B. Jahne (2004), A surface renewal model to analyze infrared images sequences of the ocean surface for the

study of air-sea heat and gas exchange, J. Geophys. Res., 109, C08S15, doi:10.1029/2003JC001802.

Acknowledgments
We are grateful to the National Science
Foundation (OCE-0825394) for support
of this research, and to D.C.E. Bakker
who provided critical assistance during
the JR239 cruise. We also thank
Dempsey E. Lott III for laboratory
support. We appreciate the insightful
comments and suggestions of W.
Aeschbach-Hertig and one anonymous
reviewer. ANDREX program cruise data
including discrete noble gas and
helium isotope samples are available
upon request from the British
Oceanographic Data Centre, http://
www.bodc.ac.uk/projects/uk/andrex/.

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 19

http://dx.doi.org/10.1002/palo.20046
http://dx.doi.org/10.1126/science.1105531
http://dx.doi.org/10.1029/2000GL011597
http://dx.doi.org/10.1029/1999WR900130
http://dx.doi.org/10.1029/2007WR006454
http://dx.doi.org/10.1175/JCLI3937.1
http://dx.doi.org/10.1016/S0277-3791(01)00083-X
http://dx.doi.org/10.1175/JPO-D-12-0186.1
http://dx.doi.org/10.1016/S0016-7037(99)00131-3
http://dx.doi.org/10.1029/2009JC005805
http://dx.doi.org/10.1029/94JC03224
http://dx.doi.org/10.1029/JC089iC03p03561
http://dx.doi.org/10.1098/rsta.2013.0298
http://dx.doi.org/10.1002/2015PA002778
http://dx.doi.org/10.1002/2015GL064364
http://dx.doi.org/10.1029/2012GL053054
http://dx.doi.org/10.1029/2003JC002008
http://dx.doi.org/10.1038/nature05832
http://dx.doi.org/10.1029/2003JC001802
http://www.bodc.ac.uk/projects/uk/andrex/
http://www.bodc.ac.uk/projects/uk/andrex/


Gruber, N. et al. (2009), Oceanic sources, sinks, and transport of atmospheric CO2, Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/
2008GB003349.

Hain, M. P., D. M. Sigman, and G. H. Haug (2010), Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water forma-
tion, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model, Global Biogeo-
chem. Cycles, 24, GB4023, doi:10.1029/2010GB003790.

Hamme, R. C., and S. R. Emerson (2002), Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and
neon, Geophys. Res. Lett., 29(23), 2120, doi:10.1029/2002GL015273.

Hamme, R. C., and S. R. Emerson (2004), The solubility of neon, nitrogen and argon in distilled water and seawater, Deep Sea Res., Part I, 51,
1517–1528.

Hamme, R. C., and J. P. Severinghaus (2007), Trace gas disequilibria during deep-water formation, Deep Sea Res., Part I, 54, 939–950.
Hellmer, H. H. (2004), Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties, Geophys. Res. Lett., 31, L10307, doi:

10.1029/2004GL019506.
Hohmann, R., P. Schlosser, S. Jacobs, A. Ludin, and R. Weppernig (2002), Excess helium and neon in the southeast Pacific: Tracers for glacial

meltwater, J. Geophys. Res., 107(C11), 3198, doi:10.1029/2000JC000378.
Holland, P. R., A. Jenkins, and D. M. Holland (2008), The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature, J. Clim.,

21(11), 2558–2572, doi:10.1175/2007JCLI1909.1.
Hoppema, M., O. Klatt, W. Roether, E. Fahrbach, K. Bulsiewicz, C. Rodehacke, and G. Rohardt (2001), Prominent renewal of Weddell Sea

Deep Water from a remote source, J. Mar. Res., 59(2), 257–279, doi:10.1357/002224001762882655.
Ito, T., and M. J. Follows (2013), Air-sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the Southern

Ocean, Global Biogeochem. Cycles, 27, 1129–1138, doi:10.1002/2013GB004682.
Ito, T., J. Marshall, and M. Follows (2004), What controls the uptake of transient tracers in the Southern Ocean?, Global Biogeochem. Cycles,

18, GB2021, doi:10.1029/2003GB002103.
Jacobs, S. S. (2004), Bottom water production and its links with the thermohaline circulation, Antarct. Sci., 16(4), 427–437, doi:10.1017/

S095410200400224X.
Jenkins, A., and S. Jacobs (2008), Circulation and melting beneath George VI Ice Shelf, Antarctica, J Geophys Res, 113, C04013, doi:10.1029/

2007JC004449.
Jenkins, W. J., D. E. Lott III, B. E. Longworth, J. M. Curtice, and K. L. Cahill (2015), The distributions of helium isotopes and tritium along the

U.S. GEOTRACES North Atlantic sections (GEOTRACES GAO3), Deep Sea Res., Part II, 116, 21–28, doi:10.1016/j.dsr2.2014.11.017.
Jullion, L. et al. (2014), The contribution of the Weddell Gyre to the lower limb of the global overturning circulation, J. Geophys. Res. Oceans,

119, 3357–3377, doi:10.1002/2013JC009725.
Karstensen, J., and M. Tomczak (1998), Age determination of mixed water masses using CFC and oxygen data, J. Geophys. Res., 103(C9),

18,599–18,609, doi:10.1029/98JC00889.
Killawee, J. A., I. J. Fairchild, J.-L. Tison, L. Janssens, and R. Lorrain (1998), Segregation of solutes and gases in experimental freezing of dilute

solutions: Implications for natural glacial systems, Geochim. Cosmochim. Acta, 62, 3637–3655.
Le Qu�er�e, C., et al. (2007), Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316, 1735–1736.
Liang, J.-H., C. Deutsch, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba (2013), Parameterizing bubble-mediated air-sea gas

exchange and its effect on ocean ventilation, Global Biogeochem. Cycles, 27, 894–905, doi:10.1002/gbc.20080.
Loose, B., and W. J. Jenkins (2014), The five stable noble gases are sensitive unambiguous tracers of glacial meltwater: Loose and Jenkins;

noble gases are tracers of meltwater, Geophys. Res. Lett., 41, 2835–2841, doi:10.1002/2013GL058804.
Loose, B., P. Schlosser, W. M. Smethie, and S. Jacobs (2009a), An optimized estimate of glacial melt from the Ross Ice Shelf using noble

gases, stable isotopes, and CFC transient tracers, J. Geophys. Res., 114, C08007, doi:10.1029/2008JC005048.
Loose, B., W. R. McGillis, P. Schlosser, D. Perovich, and T. Takahashi (2009b), The effects of freezing, growth and ice cover on gas transport

processes in laboratory seawater experiments, Geophys. Res. Lett., 36, L05603, doi:10.1029/2008GL036318.
Loose, B., W. R. McGillis, D. Perovich, C. J. Zappa, and P. Schlosser (2014), A parameter model of gas exchange for the seasonal sea ice zone,

Ocean Sci., 10, 17–28, doi:10.5194/os-10-17-2014.
Lott, D. E. (2001), Improvements in noble gas separation methodology: A nude cryogenic trap, Geochem. Geophys. Geosyst., 2(12), 1068,

doi:10.1029/2001GC000202.
Lovely, A., B. Loose, P. Schlosser, W. McGillis, C. Zappa, D. Perovich, S. Brown, T. Morell, D. Hsueh, and R. Friedrich (2015), The Gas Transfer

through Polar Sea ice experiment: Insights into the rates and pathways that determine geochemical fluxes, J. Geophys. Res. Oceans, 120,
8177–8194, doi:10.1002/2014JC010607.

Lupton, R. A., and H. Craig (1981), A major 3He source at 158S on the East Pacific Rise, Science, 214, 13–18, doi:10.1126/science.214.4516.13.
Malone, J. L., M. C. Castro, C. M. Hall, P. T. Doran, F. Kenig, and C. P. McKay (2010), New insights into the origin and evolution of Lake Vida,

McMurdo Dry Valleys, Antarctica: A noble gas study in ice and brines, Earth Planet. Sci. Lett., 289(1–2), 112–122, doi:10.1016/
j.epsl.2009.10.034.

Marinov, I., A. Gnanadesikan, J. R. Toggweiler, and J. L. Sarmiento (2006), The Southern Ocean biogeochemical divide, Nature, 441,
964–967.

Martinierie, P., D. Raynaud, D. M. Etheridge, J.-M. Barnol, and D. Mazaudier (1992), Physical and climatic parameters which influence the air
content in polar ice, Earth Planet. Sci. Lett., 112, 1–13.

Meredith, M. P. (2013), Oceanography: Replenishing the abyss, Nat. Geosci., 6(3), 166–167, doi:10.1038/ngeo1743.
Meredith, M. P., A. L. Gordon, A. C. Naveira Garabato, E. P. Abrahamsen, B. A. Huber, L. Jullion, and H. J. Venables (2011), Synchronous inten-

sification and warming of Antarctic Bottom Water outflow from the Weddell Gyre, Geophys. Res. Lett., 38, L03603, doi:10.1029/
2010GL046265.

Mooney, C. Z.; D. (1993), Bootstrapping: A Nonparametric Approach to Statistical Inference (Quantitative Applications in the Social Sciences),
Sage Univ. Pap. Ser., 07-095.

Namiot, A. Y., and E. B. Bukhgalter (1965), Clathrates formed by gases in ice, J. Struct. Chem., 6, 873–874.
Naveira Garabato, A. C., A. P. Williams, and S. Bacon (2014), The three-dimensional overturning circulation of the Southern Ocean during

the WOCE era, Prog. Oceanogr., 120, 41–78, doi:10.1016/j.pocean.2013.07.018.
Nicholson, D., S. Emerson, N. Caillon, J. Jouzel, and R. C. Hamme (2010), Constraining ventilation during deepwater formation using deep

ocean measurements of the dissolved gas ratios 40Ar/36Ar, N2/Ar, and Kr/Ar, J. Geophys. Res., 115, C11015, doi:10.1029/2010JC006152.
Notz, D., and M. G. Worster (2009), Desalination processes of sea ice revisited, J. Geophys. Res., 114, C05006, doi:10.1029/2008JC004885.
Oerter, H., J. Kipfstuhl, J. Determann, H. Miller, D. Wagenbach, A. Minikin, and W. Graft (1992), Evidence for basal marine ice in the Filchner-

Ronne ice shelf, Nature, 358(6385), 399–401, doi:10.1038/358399a0.

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 20

http://dx.doi.org/10.1029/2008GB003349
http://dx.doi.org/10.1029/2008GB003349
http://dx.doi.org/10.1029/2010GB003790
http://dx.doi.org/10.1029/2002GL015273
http://dx.doi.org/10.1029/2004GL019506
http://dx.doi.org/10.1029/2000JC000378
http://dx.doi.org/10.1175/2007JCLI1909.1
http://dx.doi.org/10.1357/002224001762882655
http://dx.doi.org/10.1002/2013GB004682
http://dx.doi.org/10.1029/2003GB002103
http://dx.doi.org/10.1017/S095410200400224X
http://dx.doi.org/10.1017/S095410200400224X
http://dx.doi.org/10.1029/2007JC004449
http://dx.doi.org/10.1029/2007JC004449
http://dx.doi.org/10.1016/j.dsr2.2014.11.017
http://dx.doi.org/10.1002/2013JC009725
http://dx.doi.org/10.1029/98JC00889
http://dx.doi.org/10.1002/gbc.20080
http://dx.doi.org/10.1002/2013GL058804
http://dx.doi.org/10.1029/2008JC005048
http://dx.doi.org/10.1029/2008GL036318
http://dx.doi.org/10.5194/os-10-17-2014
http://dx.doi.org/10.1029/2001GC000202
http://dx.doi.org/10.1002/2014JC010607
http://dx.doi.org/10.1126/science.214.4516.13
http://dx.doi.org/10.1016/j.epsl.2009.10.034
http://dx.doi.org/10.1016/j.epsl.2009.10.034
http://dx.doi.org/10.1038/ngeo1743
http://dx.doi.org/10.1029/2010GL046265
http://dx.doi.org/10.1029/2010GL046265
http://dx.doi.org/10.1016/j.pocean.2013.07.018
http://dx.doi.org/10.1029/2010JC006152
http://dx.doi.org/10.1029/2008JC004885
http://dx.doi.org/10.1038/358399a0


Ohshima, K. I. et al. (2013), Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci., 6(3),
235–240, doi:10.1038/ngeo1738.

Orsi, A. H., W. M. J. Smethie, and J. L. Bullister (2002), On the total input of Antarctic waters to the deep ocean: A preliminary estimate from
chlorofluorocarbon measurements, J. Geophys. Res., 107(C8), 3122, doi:10.1029/2001JC000976.

Poole, R., and M. Tomczak (1999), Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline, Deep
Sea Res., Part I, 46, 1895–1921.

Schlosser, P., R. Bayer, A. Foldvik, T. Gammelsr€od, G. Rohardt, and O. K. M€unnich (1990), Oxygen 18 and Helium as tracers of ice shelf water
and water/ice interaction in the Weddell Sea, J. Geophys. Res., 95(C3), 3253–3263, doi:10.1029/JC095iC03p03253.

Sievers, H. A., and W. D. Nowlin (1984), The stratification and water masses at Drake Passage, J. Geophys. Res., 89(C6), 10,489–10,514, doi:
10.1029/JC089iC06p10489.

Sigman, D. M., M. P. Hain, and G. H. Haug (2010), The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466(7302),
47–55, doi:10.1038/nature09149.

Stanley, R. H. R., W. J. Jenkins, and S. C. Doney (2006), Quantifying seasonal air-sea gas exchange processes using noble gas time-series: A
design experiment, J. Mar. Res., 64, 267–295.

Stanley, R. H. R., G. Baschek, D. E. I. Lott, and W. J. Jenkins (2009a), A method for measuring noble gases and their isotopic ratios using pro-
grammed multistage cryogenic trapping and a combination of quadrupole and magnetic sector mass spectrometers, Geochem. Geo-
phys. Geosystems, 10, Q05008, doi:10.1029/2009GC002429.

Stanley, R. H. R., B. Baschek, D. E. Lott, and W. J. Jenkins (2009b), A new automated method for measuring noble gases and their isotopic
ratios in water samples, Geochem. Geophys. Geosystems, 10, Q05008, doi:10.1029/2009GC002429.

Stanley, R. H. R., W. J. Jenkins, D. E. I. Lott, and S. C. Doney (2009c), Noble gas constraints on air-sea gas exchange and bubble fluxes.,
J. Geophys. Res., 114, C11020, doi:10.1029/2009JC005396.

Stephens, B. B., and R. F. Keeling (2000), The influence of Antarctic sea ice on glacial-interglacial CO2 variations, Nature, 404, 171–174.
Stute, M., and P. Schlosser (1993), Principles and Applications of the Noble Gas Paleothermometer, in Climate Change in Continental Isotopic

Records, edited by P. K. Swart, et al., pp. 89–100, AGU, Washington, D. C.
Stute, M., and P. Schlosser (2000), Atmospheric noble gases, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook and

A. L. Herczeg, pp. 349–377, Springer, Boston, Mass.
Stute, M., M. Forster, H. Frischkorn, A. Serejo, and J. F. Clark (1995), Cooling of tropical Brazil (58C) during the Last Glacial Maximum, Science,

269, 379–383.
Talley, L. D. (2008), Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components,

Prog. Oceanogr., 78(4), 257–303, doi:10.1016/j.pocean.2008.05.001.
Toggweiler, J. R. (1999), Variation of atmospheric CO2 by ventilation of the ocean’s deepest water, Paleoceanography, 14(5), 572–588, doi:

10.1029/1999PA900033.
Tomczak, M. (1981), A multiparameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing,

Prog. Oceanogr., 10, 147–171.
Top, Z., S. Martin, and P. Becker (1988), A laboratory study of dissolved noble gas anomaly due to ice formation, Geophys. Res. Lett., 15(8),

796–799, doi:10.1029/GL015i008p00796.
Wanninkhof, R. (1992), Relationship between Wind-Speed and Gas-Exchange over the Ocean, J. Geophys. Res., 97(C5), 7373–7382, doi:

10.1029/92JC00188.
Weiss, R. F. (1971), Solubility of helium and neon in water and seawater, J. Chem. Eng. Data, 16, 235–240.
Weiss, R. F., and T. K. Kyser (1978), Solubility of krypton in water and sea water, J. Chem. Eng. Data, 23(1), 69–72, doi:10.1021/je60076a014.
Well, R., W. Roether, and D. P. Stevens (2003), An additional deep-water mass in Drake Passage as revealed by 3He data, Deep Sea Res., Part

I, 50, 1079–1098.
Wood, D., and R. Caputi (1966), Solubilities of Kr and Xe in Fresh and Sea Water, U.S. Nav. Radiol. Def. Lab., San Francisco, Calif.

Journal of Geophysical Research: Oceans 10.1002/2016JC011809

LOOSE ET AL. RECHARGE PROPERTIES OF THE DEEP OCEAN 21

http://dx.doi.org/10.1038/ngeo1738
http://dx.doi.org/10.1029/2001JC000976
http://dx.doi.org/10.1029/JC089iC06p10489
http://dx.doi.org/10.1038/nature09149
http://dx.doi.org/10.1029/2009GC002429
http://dx.doi.org/10.1029/2009GC002429
http://dx.doi.org/10.1029/2009JC005396
http://dx.doi.org/10.1016/j.pocean.2008.05.001
http://dx.doi.org/10.1029/1999PA900033
http://dx.doi.org/10.1029/GL015i008p00796
http://dx.doi.org/10.1029/92JC00188
http://dx.doi.org/10.1021/je60076a014

	l
	l
	l
	l
	l
	l

